These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21948948)

  • 1. The Na conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers.
    DiFranco M; Vergara JL
    J Gen Physiol; 2011 Oct; 138(4):393-419. PubMed ID: 21948948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The delayed rectifier potassium conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers.
    DiFranco M; Quinonez M; Vergara JL
    J Gen Physiol; 2012 Aug; 140(2):109-37. PubMed ID: 22851675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloride currents from the transverse tubular system in adult mammalian skeletal muscle fibers.
    DiFranco M; Herrera A; Vergara JL
    J Gen Physiol; 2011 Jan; 137(1):21-41. PubMed ID: 21149546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inward rectifier potassium currents in mammalian skeletal muscle fibres.
    DiFranco M; Yu C; Quiñonez M; Vergara JL
    J Physiol; 2015 Mar; 593(5):1213-38. PubMed ID: 25545278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical imaging and functional characterization of the transverse tubular system of mammalian muscle fibers using the potentiometric indicator di-8-ANEPPS.
    DiFranco M; Capote J; Vergara JL
    J Membr Biol; 2005 Nov; 208(2):141-53. PubMed ID: 16645743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-dependent dynamic FRET signals from the transverse tubules in mammalian skeletal muscle fibers.
    DiFranco M; Capote J; Quiñonez M; Vergara JL
    J Gen Physiol; 2007 Dec; 130(6):581-600. PubMed ID: 18040060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sarcolemmal-restricted localization of functional ClC-1 channels in mouse skeletal muscle.
    Lueck JD; Rossi AE; Thornton CA; Campbell KP; Dirksen RT
    J Gen Physiol; 2010 Dec; 136(6):597-613. PubMed ID: 21078869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weakening of ion-channel interactions of Na+ and Li+ in acetylcholine-receptor channels of frog skeletal muscle with an increase in agonist concentration.
    Manthey AA
    Pflugers Arch; 1998 May; 435(6):818-26. PubMed ID: 9518511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal conduction of surface action potentials in detubulated amphibian skeletal muscle fibres.
    Sheikh SM; Skepper JN; Chawla S; Vandenberg JI; Elneil S; Huang CL
    J Physiol; 2001 Sep; 535(Pt 2):579-90. PubMed ID: 11533146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulatory actions of di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS), voltage-sensitive dye, on the BKCa channel in pituitary tumor (GH3) cells.
    Wu SN; Lin MW; Wang YJ
    Pflugers Arch; 2008 Jan; 455(4):687-99. PubMed ID: 17701422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercharging accelerates T-tubule membrane potential changes in voltage clamped frog skeletal muscle fibers.
    Kim AM; Vergara JL
    Biophys J; 1998 Oct; 75(4):2098-116. PubMed ID: 9746552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-dependent chloride channel expression in skeletal muscle fibres of normal and HSA(LR) myotonic mice.
    DiFranco M; Yu C; Quiñonez M; Vergara JL
    J Physiol; 2013 Mar; 591(5):1347-71. PubMed ID: 23247112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confocal imaging of transmembrane voltage by SEER of di-8-ANEPPS.
    Manno C; Figueroa L; Fitts R; Ríos E
    J Gen Physiol; 2013 Mar; 141(3):371-87. PubMed ID: 23440278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of temperature on slow and fast inactivation of rat skeletal muscle Na(+) channels.
    Ruff RL
    Am J Physiol; 1999 Nov; 277(5):C937-47. PubMed ID: 10564086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gating behaviour of sodium currents in adult mouse muscle recorded with an improved two-electrode voltage clamp.
    Fu Y; Struyk A; Markin V; Cannon S
    J Physiol; 2011 Feb; 589(Pt 3):525-46. PubMed ID: 21135045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nav1.4 deregulation in dystrophic skeletal muscle leads to Na+ overload and enhanced cell death.
    Hirn C; Shapovalov G; Petermann O; Roulet E; Ruegg UT
    J Gen Physiol; 2008 Aug; 132(2):199-208. PubMed ID: 18625851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved vaseline gap voltage clamp for skeletal muscle fibers.
    Hille B; Campbell DT
    J Gen Physiol; 1976 Mar; 67(3):265-93. PubMed ID: 1083424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model study of the contribution of active Na-K transport to membrane repolarization in cardiac cells.
    Lemieux DR; Roberge FA; Savard P
    J Theor Biol; 1990 Jan; 142(1):1-34. PubMed ID: 2161970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic selectivity of the sodium channel of frog skeletal muscle.
    Campbell DT
    J Gen Physiol; 1976 Mar; 67(3):295-307. PubMed ID: 1262852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling ion permeation through batrachotoxin-modified Na+ channels from rat skeletal muscle with a multi-ion pore.
    Ravindran A; Kwiecinski H; Alvarez O; Eisenman G; Moczydlowski E
    Biophys J; 1992 Feb; 61(2):494-508. PubMed ID: 1312366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.