These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 21949367)

  • 1. UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity.
    Guo X; Engel JL; Xiao J; Tagliabracci VS; Wang X; Huang L; Dixon JE
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):18649-54. PubMed ID: 21949367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatase UBLCP1 controls proteasome assembly.
    Sun S; Liu S; Zhang Z; Zeng W; Sun C; Tao T; Lin X; Feng XH
    Open Biol; 2017 May; 7(5):. PubMed ID: 28539385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Keeping proteasomes under control--a role for phosphorylation in the nucleus.
    Sha Z; Peth A; Goldberg AL
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):18573-4. PubMed ID: 22065770
    [No Abstract]   [Full Text] [Related]  

  • 4. A potent and selective inhibitor for the UBLCP1 proteasome phosphatase.
    He Y; Guo X; Yu ZH; Wu L; Gunawan AM; Zhang Y; Dixon JE; Zhang ZY
    Bioorg Med Chem; 2015 Jun; 23(12):2798-809. PubMed ID: 25907364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible phosphorylation of Rpn1 regulates 26S proteasome assembly and function.
    Liu X; Xiao W; Zhang Y; Wiley SE; Zuo T; Zheng Y; Chen N; Chen L; Wang X; Zheng Y; Huang L; Lin S; Murphy AN; Dixon JE; Xu P; Guo X
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):328-336. PubMed ID: 31843888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure and Rpn1 interaction of the UBL domain of human RNA polymerase II C-terminal domain phosphatase.
    Yun JH; Ko S; Lee CK; Cheong HK; Cheong C; Yoon JB; Lee W
    PLoS One; 2013; 8(5):e62981. PubMed ID: 23667555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel autism-associated UBLCP1 mutation impacts proteasome regulation/activity.
    Soueid J; Hamze Z; Bedran J; Chahrour M; Boustany RM
    Transl Psychiatry; 2023 Dec; 13(1):404. PubMed ID: 38129378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible phosphorylation of the 26S proteasome.
    Guo X; Huang X; Chen MJ
    Protein Cell; 2017 Apr; 8(4):255-272. PubMed ID: 28258412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5.
    Yeo M; Lin PS; Dahmus ME; Gill GN
    J Biol Chem; 2003 Jul; 278(28):26078-85. PubMed ID: 12721286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and characterization of a novel RNA polymerase II C-terminal domain phosphatase.
    Zheng H; Ji C; Gu S; Shi B; Wang J; Xie Y; Mao Y
    Biochem Biophys Res Commun; 2005 Jun; 331(4):1401-7. PubMed ID: 15883030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteasome regulation by ADP-ribosylation.
    Cho-Park PF; Steller H
    Cell; 2013 Apr; 153(3):614-27. PubMed ID: 23622245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins.
    Besche HC; Haas W; Gygi SP; Goldberg AL
    Biochemistry; 2009 Mar; 48(11):2538-49. PubMed ID: 19182904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PSMD5 Inactivation Promotes 26S Proteasome Assembly during Colorectal Tumor Progression.
    Levin A; Minis A; Lalazar G; Rodriguez J; Steller H
    Cancer Res; 2018 Jul; 78(13):3458-3468. PubMed ID: 29716915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein Degradation of RNA Polymerase II-Association Factor 1(PAF1) Is Controlled by CNOT4 and 26S Proteasome.
    Sun HY; Kim N; Hwang CS; Yoo JY
    PLoS One; 2015; 10(5):e0125599. PubMed ID: 25933433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ubiquitin specific protease-4 (USP4) interacts with the S9/Rpn6 subunit of the proteasome.
    Zhao B; Velasco K; Sompallae R; Pfirrmann T; Masucci MG; Lindsten K
    Biochem Biophys Res Commun; 2012 Oct; 427(3):490-6. PubMed ID: 23022198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Details Underlying Dynamic Structures and Regulation of the Human 26S Proteasome.
    Wang X; Cimermancic P; Yu C; Schweitzer A; Chopra N; Engel JL; Greenberg C; Huszagh AS; Beck F; Sakata E; Yang Y; Novitsky EJ; Leitner A; Nanni P; Kahraman A; Guo X; Dixon JE; Rychnovsky SD; Aebersold R; Baumeister W; Sali A; Huang L
    Mol Cell Proteomics; 2017 May; 16(5):840-854. PubMed ID: 28292943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PNUTS, a protein phosphatase 1 (PP1) nuclear targeting subunit. Characterization of its PP1- and RNA-binding domains and regulation by phosphorylation.
    Kim YM; Watanabe T; Allen PB; Kim YM; Lee SJ; Greengard P; Nairn AC; Kwon YG
    J Biol Chem; 2003 Apr; 278(16):13819-28. PubMed ID: 12574161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small C-terminal domain phosphatase enhances snail activity through dephosphorylation.
    Wu Y; Evers BM; Zhou BP
    J Biol Chem; 2009 Jan; 284(1):640-648. PubMed ID: 19004823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of nuclear import in protection of the vitamin D receptor from polyubiquitination and proteasome-mediated degradation.
    Peleg S; Nguyen CV
    J Cell Biochem; 2010 Jul; 110(4):926-34. PubMed ID: 20564192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consequences of COP9 signalosome and 26S proteasome interaction.
    Huang X; Hetfeld BK; Seifert U; Kähne T; Kloetzel PM; Naumann M; Bech-Otschir D; Dubiel W
    FEBS J; 2005 Aug; 272(15):3909-17. PubMed ID: 16045761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.