BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 21949375)

  • 1. Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice.
    Nori S; Okada Y; Yasuda A; Tsuji O; Takahashi Y; Kobayashi Y; Fujiyoshi K; Koike M; Uchiyama Y; Ikeda E; Toyama Y; Yamanaka S; Nakamura M; Okano H
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16825-30. PubMed ID: 21949375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity.
    Kobayashi Y; Okada Y; Itakura G; Iwai H; Nishimura S; Yasuda A; Nori S; Hikishima K; Konomi T; Fujiyoshi K; Tsuji O; Toyama Y; Yamanaka S; Nakamura M; Okano H
    PLoS One; 2012; 7(12):e52787. PubMed ID: 23300777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Regeneration of the central nervous system using iPS cell-technologies].
    Okano H
    Rinsho Shinkeigaku; 2009 Nov; 49(11):825-6. PubMed ID: 20030221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury.
    Tsuji O; Miura K; Okada Y; Fujiyoshi K; Mukaino M; Nagoshi N; Kitamura K; Kumagai G; Nishino M; Tomisato S; Higashi H; Nagai T; Katoh H; Kohda K; Matsuzaki Y; Yuzaki M; Ikeda E; Toyama Y; Nakamura M; Yamanaka S; Okano H
    Proc Natl Acad Sci U S A; 2010 Jul; 107(28):12704-9. PubMed ID: 20615974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic potential of induced neural stem cells for spinal cord injury.
    Hong JY; Lee SH; Lee SC; Kim JW; Kim KP; Kim SM; Tapia N; Lim KT; Kim J; Ahn HS; Ko K; Shin CY; Lee HT; Schöler HR; Hyun JK; Han DW
    J Biol Chem; 2014 Nov; 289(47):32512-25. PubMed ID: 25294882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. hiPSC-derived NSCs effectively promote the functional recovery of acute spinal cord injury in mice.
    Kong D; Feng B; Amponsah AE; He J; Guo R; Liu B; Du X; Liu X; Zhang S; Lv F; Ma J; Cui H
    Stem Cell Res Ther; 2021 Mar; 12(1):172. PubMed ID: 33706803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Therapeutic potential of induced pluripotent stem cells for spinal cord injury].
    Nori S; Tsuji O; Okada Y; Toyama Y; Okano H; Nakamura M
    Brain Nerve; 2012 Jan; 64(1):17-27. PubMed ID: 22223498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Ablation of Tumorigenic Cells Following Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation in Spinal Cord Injury.
    Kojima K; Miyoshi H; Nagoshi N; Kohyama J; Itakura G; Kawabata S; Ozaki M; Iida T; Sugai K; Ito S; Fukuzawa R; Yasutake K; Renault-Mihara F; Shibata S; Matsumoto M; Nakamura M; Okano H
    Stem Cells Transl Med; 2019 Mar; 8(3):260-270. PubMed ID: 30485733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury.
    Kawabata S; Takano M; Numasawa-Kuroiwa Y; Itakura G; Kobayashi Y; Nishiyama Y; Sugai K; Nishimura S; Iwai H; Isoda M; Shibata S; Kohyama J; Iwanami A; Toyama Y; Matsumoto M; Nakamura M; Okano H
    Stem Cell Reports; 2016 Jan; 6(1):1-8. PubMed ID: 26724902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term safety issues of iPSC-based cell therapy in a spinal cord injury model: oncogenic transformation with epithelial-mesenchymal transition.
    Nori S; Okada Y; Nishimura S; Sasaki T; Itakura G; Kobayashi Y; Renault-Mihara F; Shimizu A; Koya I; Yoshida R; Kudoh J; Koike M; Uchiyama Y; Ikeda E; Toyama Y; Nakamura M; Okano H
    Stem Cell Reports; 2015 Mar; 4(3):360-73. PubMed ID: 25684226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment with a Gamma-Secretase Inhibitor Promotes Functional Recovery in Human iPSC- Derived Transplants for Chronic Spinal Cord Injury.
    Okubo T; Nagoshi N; Kohyama J; Tsuji O; Shinozaki M; Shibata S; Kase Y; Matsumoto M; Nakamura M; Okano H
    Stem Cell Reports; 2018 Dec; 11(6):1416-1432. PubMed ID: 30503258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets.
    Yamane J; Nakamura M; Iwanami A; Sakaguchi M; Katoh H; Yamada M; Momoshima S; Miyao S; Ishii K; Tamaoki N; Nomura T; Okano HJ; Kanemura Y; Toyama Y; Okano H
    J Neurosci Res; 2010 May; 88(7):1394-405. PubMed ID: 20091712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model.
    Nutt SE; Chang EA; Suhr ST; Schlosser LO; Mondello SE; Moritz CT; Cibelli JB; Horner PJ
    Exp Neurol; 2013 Oct; 248():491-503. PubMed ID: 23891888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model.
    Salazar DL; Uchida N; Hamers FP; Cummings BJ; Anderson AJ
    PLoS One; 2010 Aug; 5(8):e12272. PubMed ID: 20806064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways.
    Vroemen M; Aigner L; Winkler J; Weidner N
    Eur J Neurosci; 2003 Aug; 18(4):743-51. PubMed ID: 12925000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord.
    Yasuda A; Tsuji O; Shibata S; Nori S; Takano M; Kobayashi Y; Takahashi Y; Fujiyoshi K; Hara CM; Miyawaki A; Okano HJ; Toyama Y; Nakamura M; Okano H
    Stem Cells; 2011 Dec; 29(12):1983-94. PubMed ID: 22028197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human neural stem cell differentiation following transplantation into spinal cord injured mice: association with recovery of locomotor function.
    Cummings BJ; Uchida N; Tamaki SJ; Anderson AJ
    Neurol Res; 2006 Jul; 28(5):474-81. PubMed ID: 16808875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human iPS cell-derived astrocyte transplants preserve respiratory function after spinal cord injury.
    Li K; Javed E; Scura D; Hala TJ; Seetharam S; Falnikar A; Richard JP; Chorath A; Maragakis NJ; Wright MC; Lepore AC
    Exp Neurol; 2015 Sep; 271():479-92. PubMed ID: 26216662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplanting neural progenitors into a complete transection model of spinal cord injury.
    Medalha CC; Jin Y; Yamagami T; Haas C; Fischer I
    J Neurosci Res; 2014 May; 92(5):607-18. PubMed ID: 24452691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells.
    Fujimoto Y; Abematsu M; Falk A; Tsujimura K; Sanosaka T; Juliandi B; Semi K; Namihira M; Komiya S; Smith A; Nakashima K
    Stem Cells; 2012 Jun; 30(6):1163-73. PubMed ID: 22419556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.