These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21949395)

  • 1. Cretaceous avian crops reveal dietary secrets and pose evolutionary questions.
    Feduccia A
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16487-8. PubMed ID: 21949395
    [No Abstract]   [Full Text] [Related]  

  • 2. Fossil evidence of avian crops from the Early Cretaceous of China.
    Zheng X; Martin LD; Zhou Z; Burnham DA; Zhang F; Miao D
    Proc Natl Acad Sci U S A; 2011 Sep; 108(38):15904-7. PubMed ID: 21896733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crop volume, nectar concentration and hummingbird energetics.
    Hainsworth FR; Wolf LL
    Comp Biochem Physiol A Comp Physiol; 1972 Jun; 42(2):359-66. PubMed ID: 4404370
    [No Abstract]   [Full Text] [Related]  

  • 4. Reanalysis of Wupus agilis (Early Cretaceous) of Chongqing, China as a Large Avian Trace: Differentiating between Large Bird and Small Non-Avian Theropod Tracks.
    Xing L; Buckley LG; McCrea RT; Lockley MG; Zhang J; PiƱuela L; Klein H; Wang F
    PLoS One; 2015; 10(5):e0124039. PubMed ID: 25993285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui.
    Clarke JA; Zhou Z; Zhang F
    J Anat; 2006 Mar; 208(3):287-308. PubMed ID: 16533313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution.
    Serrano FJ; Chiappe LM
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28724626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microanatomy of the upper digestive tract of the Japanese quail.
    Warner RL; McFarland LZ; Wilson WO
    Am J Vet Res; 1967 Sep; 28(126):1537-48. PubMed ID: 6053547
    [No Abstract]   [Full Text] [Related]  

  • 8. Ultramicrostructural reductions in teeth: implications for dietary transition from non-avian dinosaurs to birds.
    Li Z; Wang CC; Wang M; Chiang CC; Wang Y; Zheng X; Huang EW; Hsiao K; Zhou Z
    BMC Evol Biol; 2020 Apr; 20(1):46. PubMed ID: 32316913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fossils and avian evolution.
    Feduccia A
    Nature; 2001 Nov; 414(6863):507-8. PubMed ID: 11734842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence.
    Zhou Z
    Naturwissenschaften; 2004 Oct; 91(10):455-71. PubMed ID: 15365634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gigantic bird from the Upper Cretaceous of Central Asia.
    Naish D; Dyke G; Cau A; EscuilliƩ F; Godefroit P
    Biol Lett; 2012 Feb; 8(1):97-100. PubMed ID: 21835881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird.
    Zhou Z; Clarke J; Zhang F
    J Anat; 2008 May; 212(5):565-77. PubMed ID: 18397240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new Lower Cretaceous bird from China and tooth reduction in early avian evolution.
    Zhou Z; Li FZ
    Proc Biol Sci; 2010 Jan; 277(1679):219-27. PubMed ID: 19586952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fossil brain from the Cretaceous of European Russia and avian sensory evolution.
    Kurochkin EN; Dyke GJ; Saveliev SV; Pervushov EM; Popov EV
    Biol Lett; 2007 Jun; 3(3):309-13. PubMed ID: 17426009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new basal bird from China with implications for morphological diversity in early birds.
    Wang M; Wang X; Wang Y; Zhou Z
    Sci Rep; 2016 Jan; 6():19700. PubMed ID: 26806355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution.
    Slack KE; Jones CM; Ando T; Harrison GL; Fordyce RE; Arnason U; Penny D
    Mol Biol Evol; 2006 Jun; 23(6):1144-55. PubMed ID: 16533822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens.
    Rashid DJ; Surya K; Chiappe LM; Carroll N; Garrett KL; Varghese B; Bailleul A; O'Connor JK; Chapman SC; Horner JR
    Sci Rep; 2018 Jun; 8(1):9014. PubMed ID: 29899503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medullary bone in an Early Cretaceous enantiornithine bird and discussion regarding its identification in fossils.
    O'Connor J; Erickson GM; Norell M; Bailleul AM; Hu H; Zhou Z
    Nat Commun; 2018 Dec; 9(1):5169. PubMed ID: 30518763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis.
    Pan Y; Zheng W; Moyer AE; O'Connor JK; Wang M; Zheng X; Wang X; Schroeter ER; Zhou Z; Schweitzer MH
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):E7900-E7907. PubMed ID: 27872291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The completeness of the fossil record of mesozoic birds: implications for early avian evolution.
    Brocklehurst N; Upchurch P; Mannion PD; O'Connor J
    PLoS One; 2012; 7(6):e39056. PubMed ID: 22761723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.