These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

519 related articles for article (PubMed ID: 21949676)

  • 61. Comparative omics-driven genome annotation refinement: application across Yersiniae.
    Schrimpe-Rutledge AC; Jones MB; Chauhan S; Purvine SO; Sanford JA; Monroe ME; Brewer HM; Payne SH; Ansong C; Frank BC; Smith RD; Peterson SN; Motin VL; Adkins JN
    PLoS One; 2012; 7(3):e33903. PubMed ID: 22479471
    [TBL] [Abstract][Full Text] [Related]  

  • 62. GC content dependency of open reading frame prediction via stop codon frequencies.
    Pohl M; Theissen G; Schuster S
    Gene; 2012 Dec; 511(2):441-6. PubMed ID: 23000023
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Constructing high complexity synthetic libraries of long ORFs using in vitro selection.
    Cho G; Keefe AD; Liu R; Wilson DS; Szostak JW
    J Mol Biol; 2000 Mar; 297(2):309-19. PubMed ID: 10715203
    [TBL] [Abstract][Full Text] [Related]  

  • 64. T-Coffee: A novel method for fast and accurate multiple sequence alignment.
    Notredame C; Higgins DG; Heringa J
    J Mol Biol; 2000 Sep; 302(1):205-17. PubMed ID: 10964570
    [TBL] [Abstract][Full Text] [Related]  

  • 65. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations.
    Abascal F; Zardoya R; Telford MJ
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W7-13. PubMed ID: 20435676
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of transcribed protein coding sequence remnants within lincRNAs.
    Talyan S; Andrade-Navarro MA; Muro EM
    Nucleic Acids Res; 2018 Sep; 46(17):8720-8729. PubMed ID: 29986053
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Widespread position-specific conservation of synonymous rare codons within coding sequences.
    Chaney JL; Steele A; Carmichael R; Rodriguez A; Specht AT; Ngo K; Li J; Emrich S; Clark PL
    PLoS Comput Biol; 2017 May; 13(5):e1005531. PubMed ID: 28475588
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Homology assessment and molecular sequence alignment.
    Phillips AJ
    J Biomed Inform; 2006 Feb; 39(1):18-33. PubMed ID: 16380300
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Identification of stop codon readthrough genes in Saccharomyces cerevisiae.
    Namy O; Duchateau-Nguyen G; Hatin I; Hermann-Le Denmat S; Termier M; Rousset JP
    Nucleic Acids Res; 2003 May; 31(9):2289-96. PubMed ID: 12711673
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Codon expansion and systematic transcriptional deletions produce tetra-, pentacoded mitochondrial peptides.
    Seligmann H
    J Theor Biol; 2015 Dec; 387():154-65. PubMed ID: 26456204
    [TBL] [Abstract][Full Text] [Related]  

  • 71. DIALIGN: finding local similarities by multiple sequence alignment.
    Morgenstern B; Frech K; Dress A; Werner T
    Bioinformatics; 1998; 14(3):290-4. PubMed ID: 9614273
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A genome-wide study of dual coding regions in human alternatively spliced genes.
    Liang H; Landweber LF
    Genome Res; 2006 Feb; 16(2):190-6. PubMed ID: 16365380
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Protein-coding regions prediction combining similarity searches and conservative evolutionary properties of protein-coding sequences.
    Rogozin IB; D'Angelo D; Milanesi L
    Gene; 1999 Jan; 226(1):129-37. PubMed ID: 9889348
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Computational analysis of stop codon readthrough in D.melanogaster.
    Sato M; Umeki H; Saito R; Kanai A; Tomita M
    Bioinformatics; 2003 Jul; 19(11):1371-80. PubMed ID: 12874049
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Correction of five different types of errors of model REFSEQs appeared in NCBI human gene database only by using two novel human genes C17orf32 and ZNF362].
    Zhang DL; Li YD; Ji L
    Yi Chuan Xue Bao; 2004 Apr; 31(4):325-34. PubMed ID: 15487498
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Periodic distributions of hydrophobic amino acids allows the definition of fundamental building blocks to align distantly related proteins.
    Baussand J; Deremble C; Carbone A
    Proteins; 2007 May; 67(3):695-708. PubMed ID: 17299747
    [TBL] [Abstract][Full Text] [Related]  

  • 77. PRFect: a tool to predict programmed ribosomal frameshifts in prokaryotic and viral genomes.
    McNair K; Salamon P; Edwards RA; Segall AM
    BMC Bioinformatics; 2024 Feb; 25(1):82. PubMed ID: 38389044
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Adaptive Smith-Waterman residue match seeding for protein structural alignment.
    Topham CM; Rouquier M; Tarrat N; André I
    Proteins; 2013 Oct; 81(10):1823-39. PubMed ID: 23720362
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Systematic asymmetric nucleotide exchanges produce human mitochondrial RNAs cryptically encoding for overlapping protein coding genes.
    Seligmann H
    J Theor Biol; 2013 May; 324():1-20. PubMed ID: 23416187
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Accurate anchoring alignment of divergent sequences.
    Huang W; Umbach DM; Li L
    Bioinformatics; 2006 Jan; 22(1):29-34. PubMed ID: 16301203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.