These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 21950087)

  • 1. [Mutual influences of upper and lower extrimities during cyclic movements].
    Solopova IA; Selionov VA; Zhvanskiĭ DS; Grishin AA
    Fiziol Cheloveka; 2011; 37(4):55-64. PubMed ID: 21950087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Interlimb interactions during cyclic in-phase and antiphased movements of arms and legs and their dependence on afferent influences].
    Selionov VA; Solopova IA; Zhvanskiĭ DS; Grishin AA
    Fiziol Cheloveka; 2014; 40(4):65-77. PubMed ID: 25707220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Abnormalities in mutual influences of upper and lower limbs in patients with stroke].
    Selionov VA; Solopova IA; Zhvanskiĭ DS; Grishin AA
    Fiziol Cheloveka; 2012; 38(3):62-72. PubMed ID: 22830245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.
    Zehr EP; Collins DF; Frigon A; Hoogenboom N
    J Neurophysiol; 2003 Jan; 89(1):12-21. PubMed ID: 12522155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The investigation of control mechanisms of stepping rhythm in human in the air-stepping conditions during passive and voluntary leg movements].
    Solopova IA; Selionon VA; Grishin AA
    Fiziol Cheloveka; 2010; 36(5):83-94. PubMed ID: 21061673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural coupling between the arms and legs during rhythmic locomotor-like cycling movement.
    Balter JE; Zehr EP
    J Neurophysiol; 2007 Feb; 97(2):1809-18. PubMed ID: 17065245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural coupling between the upper and lower limbs in humans.
    Knikou M
    Neurosci Lett; 2007 Apr; 416(2):138-43. PubMed ID: 17331647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arm movements can increase leg muscle activity during submaximal recumbent stepping in neurologically intact individuals.
    de Kam D; Rijken H; Manintveld T; Nienhuis B; Dietz V; Duysens J
    J Appl Physiol (1985); 2013 Jul; 115(1):34-42. PubMed ID: 23661622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternate leg movement amplifies locomotor-like muscle activity in spinal cord injured persons.
    Kawashima N; Nozaki D; Abe MO; Akai M; Nakazawa K
    J Neurophysiol; 2005 Feb; 93(2):777-85. PubMed ID: 15385590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maintenance of upright standing posture during trunk rotation elicited by rapid and asymmetrical movements of the arms.
    Yamazaki Y; Suzuki M; Ohkuwa T; Itoh H
    Brain Res Bull; 2005 Sep; 67(1-2):30-9. PubMed ID: 16140160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of arm movements on the lower limb during gait after a stroke.
    Stephenson JL; De Serres SJ; Lamontagne A
    Gait Posture; 2010 Jan; 31(1):109-15. PubMed ID: 19854654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The Activation of Interlimb Interactions Increase the Motor Output in Legs in Healthy Subjects under the Conditions of Arm and Leg Unloading].
    Selionov VA; Solopova IA; Zhvansky DS
    Fiziol Cheloveka; 2016; 42(1):52-63. PubMed ID: 27188147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arm sway holds sway: locomotor-like modulation of leg reflexes when arms swing in alternation.
    Massaad F; Levin O; Meyns P; Drijkoningen D; Swinnen SP; Duysens J
    Neuroscience; 2014 Jan; 258():34-46. PubMed ID: 24144625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Are Interlimb Interactions Disturbed in Patients with Parkinson's Disease: a Study in Unloading Condition?].
    Solopova IA; Selionov VA; Zhvansky DS; Karabanov AV
    Fiziol Cheloveka; 2016 Sep; 42(5):73-83. PubMed ID: 29932551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of rhythmic arm movement on reflexes in the legs: modulation of soleus H-reflexes and somatosensory conditioning.
    Frigon A; Collins DF; Zehr EP
    J Neurophysiol; 2004 Apr; 91(4):1516-23. PubMed ID: 14657191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparisons of electromyographic activity of scapular muscles between elevation and lowering of the arms.
    Faria CD; Teixeira-Salmela LF; Goulart FR; Gomes PF
    Physiother Theory Pract; 2008; 24(5):360-71. PubMed ID: 18821442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tonic central and sensory stimuli facilitate involuntary air-stepping in humans.
    Selionov VA; Ivanenko YP; Solopova IA; Gurfinkel VS
    J Neurophysiol; 2009 Jun; 101(6):2847-58. PubMed ID: 19339461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The influence of vibration on spinal alpha-motoneurons excitability in static conditions and during evoked stepping in human].
    Solopova IA; Selionov VA
    Fiziol Cheloveka; 2012; 38(2):57-65. PubMed ID: 22679797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional scapulothoracic motion during active and passive arm elevation.
    Ebaugh DD; McClure PW; Karduna AR
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):700-9. PubMed ID: 15935534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory afferent inhibition within and between limbs in humans.
    Bikmullina R; Bäumer T; Zittel S; Münchau A
    Clin Neurophysiol; 2009 Mar; 120(3):610-8. PubMed ID: 19136299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.