These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21950836)

  • 1. Impact of porous media grain size on the transport of multi-walled carbon nanotubes.
    Mattison NT; O'Carroll DM; Kerry Rowe R; Petersen EJ
    Environ Sci Technol; 2011 Nov; 45(22):9765-75. PubMed ID: 21950836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobility of multiwalled carbon nanotubes in porous media.
    Liu X; O'Carroll DM; Petersen EJ; Huang Q; Anderson CL
    Environ Sci Technol; 2009 Nov; 43(21):8153-8. PubMed ID: 19924937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and retention of multi-walled carbon nanotubes in saturated porous media: effects of input concentration and grain size.
    Kasel D; Bradford SA; Šimůnek J; Heggen M; Vereecken H; Klumpp E
    Water Res; 2013 Feb; 47(2):933-44. PubMed ID: 23228890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High mobility of SDBS-dispersed single-walled carbon nanotubes in saturated and unsaturated porous media.
    Tian Y; Gao B; Ziegler KJ
    J Hazard Mater; 2011 Feb; 186(2-3):1766-72. PubMed ID: 21236566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns.
    Tian Y; Gao B; Wang Y; Morales VL; Carpena RM; Huang Q; Yang L
    J Hazard Mater; 2012 Apr; 213-214():265-72. PubMed ID: 22361629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid screening technique for estimating nanoparticle transport in porous media.
    Bouchard D; Zhang W; Chang X
    Water Res; 2013 Aug; 47(12):4086-94. PubMed ID: 23141766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-transport of multi-walled carbon nanotubes and sodium dodecylbenzenesulfonate in chemically heterogeneous porous media.
    Zhang M; Bradford SA; Šimůnek J; Vereecken H; Klumpp E
    Environ Pollut; 2019 Apr; 247():907-916. PubMed ID: 30823345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of diameter on carbon nanotube transport in sand.
    O'Carroll DM; Liu X; Mattison NT; Petersen EJ
    J Colloid Interface Sci; 2013 Jan; 390(1):96-104. PubMed ID: 23079043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport behavior of functionalized multi-wall carbon nanotubes in water-saturated quartz sand as a function of tube length.
    Wang Y; Kim JH; Baek JB; Miller GW; Pennell KD
    Water Res; 2012 Sep; 46(14):4521-31. PubMed ID: 22704927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size.
    Kamrani S; Rezaei M; Kord M; Baalousha M
    Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of solution chemistry on multi-walled carbon nanotube deposition and mobilization in clean porous media.
    Tian Y; Gao B; Wu L; Muñoz-Carpena R; Huang Q
    J Hazard Mater; 2012 Sep; 231-232():79-87. PubMed ID: 22776831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface modification on single-walled carbon nanotube retention and transport in saturated and unsaturated porous media.
    Tian Y; Gao B; Morales VL; Wang Y; Wu L
    J Hazard Mater; 2012 Nov; 239-240():333-9. PubMed ID: 23009789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport and retention of ciprofloxacin with presence of multi-walled carbon nanotubes in the saturated porous media: impacts of ionic strength and cation types.
    Xiao R; Huang D; Du L; Yin L; Gao L; Chen H; Tang Z
    Environ Geochem Health; 2024 Apr; 46(5):153. PubMed ID: 38587707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of bacteria on the transport and deposition of multi-walled carbon nanotubes in saturated porous media.
    Han P; Zhou D; Tong M; Kim H
    Environ Pollut; 2016 Jun; 213():895-903. PubMed ID: 27038577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size.
    Wang C; Bobba AD; Attinti R; Shen C; Lazouskaya V; Wang LP; Jin Y
    Environ Sci Technol; 2012 Jul; 46(13):7151-8. PubMed ID: 22642719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applicability of colloid filtration theory in size-distributed, reduced porosity, granular media in the absence of energy barriers.
    Pazmino EF; Ma H; Johnson WP
    Environ Sci Technol; 2011 Dec; 45(24):10401-7. PubMed ID: 22029252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cotransport of multi-walled carbon nanotubes and titanium dioxide nanoparticles in saturated porous media.
    Wang X; Cai L; Han P; Lin D; Kim H; Tong M
    Environ Pollut; 2014 Dec; 195():31-8. PubMed ID: 25194269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deposition of protein-coated multi-walled carbon nanotubes on oxide surfaces and the retention in a silicon micromodel.
    Song J; Wang Q; Zeng Y; Liu Y; Jiang W
    J Hazard Mater; 2019 Aug; 375():107-114. PubMed ID: 31054527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-scale Cryptosporidium/sand interactions in water treatment.
    Tufenkji N; Dixon DR; Considine R; Drummond CJ
    Water Res; 2006 Oct; 40(18):3315-31. PubMed ID: 16979211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.