These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21950847)

  • 1. Generalized Langevin dynamics of a nanoparticle using a finite element approach: thermostating with correlated noise.
    Uma B; Swaminathan TN; Ayyaswamy PS; Eckmann DM; Radhakrishnan R
    J Chem Phys; 2011 Sep; 135(11):114104. PubMed ID: 21950847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid formalism combining fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal motion in an incompressible fluid medium.
    Uma B; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Mol Phys; 2012; 110(11-12):1057-1067. PubMed ID: 22865935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid approach for the simulation of a nearly neutrally buoyant nanoparticle thermal motion in an incompressible Newtonian fluid medium.
    Uma B; Radhakrishnan R; Eckmann DM; Ayyaswamy PS
    J Heat Transfer; 2013 Jan; 135(1):0110111-9. PubMed ID: 23814315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MODELING OF A NANOPARTICLE MOTION IN A NEWTONIAN FLUID: A COMPARISON BETWEEN FLUCTUATING HYDRODYNAMICS AND GENERALIZED LANGEVIN PROCEDURES.
    Uma B; Ayyaswamy PS; Radhakrishnan R; Eckmann DM
    Proc ASME Micro Nanoscale Heat Mass Transf Int Conf (2012); 2012 Mar; 2012():735-743. PubMed ID: 25621317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields.
    Uma B; Swaminathan TN; Radhakrishnan R; Eckmann DM; Ayyaswamy PS
    Phys Fluids (1994); 2011 Jul; 23(7):73602-7360215. PubMed ID: 21918592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity autocorrelation of a free particle driven by a Mittag-Leffler noise: fractional dynamics and temporal behaviors.
    Viñales AD; Paissan GH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062103. PubMed ID: 25615040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Markovian stochastic processes: colored noise.
    Łuczka J
    Chaos; 2005 Jun; 15(2):26107. PubMed ID: 16035909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluctuating Hydrodynamics Approach for the Simulation of Nanoparticle Brownian Motion in a Newtonian Fluid.
    Uma B; Ayyaswamy PS; Radhakrishnan R; Eckmann DM
    Int J Micronano Scale Transp; 2012 Jun; 3(1-2):13-20. PubMed ID: 23950764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized Langevin equation with multiplicative noise: temporal behavior of the autocorrelation functions.
    Mankin R; Laas K; Sauga A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061131. PubMed ID: 21797326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocarrier-Cell Surface Adhesive and Hydrodynamic Interactions: Ligand-Receptor Bond Sensitivity Study.
    Uma B; Radhakrishnan R; Eckmann DM; Ayyaswamy PS
    J Nanotechnol Eng Med; 2012 Aug; 3(3):310101-310108. PubMed ID: 23917171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized Ornstein-Uhlenbeck model for active motion.
    Sevilla FJ; Rodríguez RF; Gomez-Solano JR
    Phys Rev E; 2019 Sep; 100(3-1):032123. PubMed ID: 31640041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise.
    Viñales AD; Wang KG; Despósito MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011101. PubMed ID: 19658647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling long-range memory with stationary Markovian processes.
    Miccichè S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031116. PubMed ID: 19391911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Memory and Active Forces on Transition Path Time Distributions.
    Carlon E; Orland H; Sakaue T; Vanderzande C
    J Phys Chem B; 2018 Dec; 122(49):11186-11194. PubMed ID: 30102039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subdiffusive behavior in a trapping potential: mean square displacement and velocity autocorrelation function.
    Despósito MA; Viñales AD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021111. PubMed ID: 19792081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harmonically bound Brownian motion in fluids under shear: Fokker-Planck and generalized Langevin descriptions.
    Híjar H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022139. PubMed ID: 25768490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memory Corrections to Markovian Langevin Dynamics.
    Wiśniewski M; Łuczka J; Spiechowicz J
    Entropy (Basel); 2024 May; 26(5):. PubMed ID: 38785674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical solution of the generalized Langevin equation with hydrodynamic interactions: subdiffusion of heavy tracers.
    Grebenkov DS; Vahabi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012130. PubMed ID: 24580195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ornstein-Uhlenbeck process and generalizations: Particle dynamics under comb constraints and stochastic resetting.
    Trajanovski P; Jolakoski P; Zelenkovski K; Iomin A; Kocarev L; Sandev T
    Phys Rev E; 2023 May; 107(5-1):054129. PubMed ID: 37328979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite generalized Langevin equation for Brownian motion in different hydrodynamic and adhesion regimes.
    Yu HY; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052303. PubMed ID: 26066173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.