These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 21950901)

  • 1. Design optimization of scaffold microstructures using wall shear stress criterion towards regulated flow-induced erosion.
    Chen Y; Schellekens M; Zhou S; Cadman J; Li W; Appleyard R; Li Q
    J Biomech Eng; 2011 Aug; 133(8):081008. PubMed ID: 21950901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of cellular porous biomaterials for wall shear stress criterion.
    Chen Y; Zhou S; Cadman J; Li Q
    Biotechnol Bioeng; 2010 Nov; 107(4):737-46. PubMed ID: 20589850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multiscale computational fluid dynamics approach to simulate the micro-fluidic environment within a tissue engineering scaffold with highly irregular pore geometry.
    Zhao F; Melke J; Ito K; van Rietbergen B; Hofmann S
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1965-1977. PubMed ID: 31201621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Fluid Dynamics Study of the Effects of Surface Roughness on Permeability and Fluid Flow-Induced Wall Shear Stress in Scaffolds.
    Ali D; Sen S
    Ann Biomed Eng; 2018 Dec; 46(12):2023-2035. PubMed ID: 30030771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-computed tomography based computational fluid dynamics for the determination of shear stresses in scaffolds within a perfusion bioreactor.
    Zermatten E; Vetsch JR; Ruffoni D; Hofmann S; Müller R; Steinfeld A
    Ann Biomed Eng; 2014 May; 42(5):1085-94. PubMed ID: 24492950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure design of biodegradable scaffold and its effect on tissue regeneration.
    Chen Y; Zhou S; Li Q
    Biomaterials; 2011 Aug; 32(22):5003-14. PubMed ID: 21529933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element study of scaffold architecture design and culture conditions for tissue engineering.
    Olivares AL; Marsal E; Planell JA; Lacroix D
    Biomaterials; 2009 Oct; 30(30):6142-9. PubMed ID: 19674779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of flow-induced shear stress applied on 3D cellular scaffolds: Implications for vascular tissue engineering.
    Lesman A; Blinder Y; Levenberg S
    Biotechnol Bioeng; 2010 Feb; 105(3):645-54. PubMed ID: 19787638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational evaluation of oxygen and shear stress distributions in 3D perfusion culture systems: macro-scale and micro-structured models.
    Cioffi M; Küffer J; Ströbel S; Dubini G; Martin I; Wendt D
    J Biomech; 2008 Oct; 41(14):2918-25. PubMed ID: 18789444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model for bone tissue regeneration inside a specific type of scaffold.
    Sanz-Herrera JA; Garcia-Aznar JM; Doblare M
    Biomech Model Mechanobiol; 2008 Oct; 7(5):355-66. PubMed ID: 17530310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling material-degradation-induced elastic property of tissue engineering scaffolds.
    Bawolin NK; Li MG; Chen XB; Zhang WJ
    J Biomech Eng; 2010 Nov; 132(11):111001. PubMed ID: 21034142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational models for wall shear stress estimation in scaffolds: a comparative study of two complete geometries.
    Maes F; Claessens T; Moesen M; Van Oosterwyck H; Van Ransbeeck P; Verdonck P
    J Biomech; 2012 Jun; 45(9):1586-92. PubMed ID: 22541942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Study of Granular Scaffold Efficiency to Convert Fluid Flow into Mechanical Stimulation in Bone Tissue Engineering.
    Cruel M; Bensidhoum M; Nouguier-Lehon C; Dessombz O; Becquart P; Petite H; Hoc T
    Tissue Eng Part C Methods; 2015 Sep; 21(9):863-71. PubMed ID: 25634115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wall shear stress on LDL accumulation in human RCAs.
    Soulis JV; Fytanidis DK; Papaioannou VC; Giannoglou GD
    Med Eng Phys; 2010 Oct; 32(8):867-77. PubMed ID: 20580302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local and regional mechanical characterisation of a collagen-glycosaminoglycan scaffold using high-resolution finite element analysis.
    Stops AJ; Harrison NM; Haugh MG; O'Brien FJ; McHugh PE
    J Mech Behav Biomed Mater; 2010 May; 3(4):292-302. PubMed ID: 20346897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular cell adhesion molecule-1 expression in endothelial cells exposed to physiological coronary wall shear stresses.
    O'Keeffe LM; Muir G; Piterina AV; McGloughlin T
    J Biomech Eng; 2009 Aug; 131(8):081003. PubMed ID: 19604015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical interaction between cells and fluid for bone tissue engineering scaffold: modulation of the interfacial shear stress.
    Blecha LD; Rakotomanana L; Razafimahery F; Terrier A; Pioletti DP
    J Biomech; 2010 Mar; 43(5):933-7. PubMed ID: 20004397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macro-scale topology optimization for controlling internal shear stress in a porous scaffold bioreactor.
    Youssef K; Mack JJ; Iruela-Arispe ML; Bouchard LS
    Biotechnol Bioeng; 2012 Jul; 109(7):1844-54. PubMed ID: 22252902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.