BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 21951281)

  • 1. Superluminescent variants of marine luciferases for bioassays.
    Kim SB; Suzuki H; Sato M; Tao H
    Anal Chem; 2011 Nov; 83(22):8732-40. PubMed ID: 21951281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labor-effective manipulation of marine and beetle luciferases for bioassays.
    Kim SB
    Protein Eng Des Sel; 2012 Jun; 25(6):261-9. PubMed ID: 22514115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiply mutated Gaussia luciferases provide prolonged and intense bioluminescence.
    Welsh JP; Patel KG; Manthiram K; Swartz JR
    Biochem Biophys Res Commun; 2009 Nov; 389(4):563-8. PubMed ID: 19825431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Few substitutions affect the bioluminescence spectra of Phrixotrix (Coleoptera: Phengodidae) luciferases: a site-directed mutagenesis survey.
    Viviani VR; Arnoldi FG; Ogawa FT; Brochetto-Braga M
    Luminescence; 2007; 22(4):362-9. PubMed ID: 17471476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to Fabricate Functional Artificial Luciferases for Bioassays.
    Kim SB; Fujii R
    Methods Mol Biol; 2016; 1461():43-53. PubMed ID: 27424894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Split Gaussia luciferase-based bioluminescence template for tracing protein dynamics in living cells.
    Kim SB; Sato M; Tao H
    Anal Chem; 2009 Jan; 81(1):67-74. PubMed ID: 19061336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically encoded bioluminescent indicators for stress hormones.
    Kim SB; Sato M; Tao H
    Anal Chem; 2009 May; 81(10):3760-8. PubMed ID: 19388668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of a New Lineage of Artificial Luciferases from Natural Luciferase Pools.
    Kim SB; Nishihara R; Citterio D; Suzuki K
    ACS Comb Sci; 2017 Sep; 19(9):594-599. PubMed ID: 28742969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional artificial luciferases as an optical readout for bioassays.
    Kim SB; Izumi H
    Biochem Biophys Res Commun; 2014 Jun; 448(4):418-23. PubMed ID: 24802399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo.
    Tannous BA; Kim DE; Fernandez JL; Weissleder R; Breakefield XO
    Mol Ther; 2005 Mar; 11(3):435-43. PubMed ID: 15727940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis of firefly luciferase: implication of conserved residue(s) in bioluminescence emission spectra among firefly luciferases.
    Tafreshi NKh; Sadeghizadeh M; Emamzadeh R; Ranjbar B; Naderi-Manesh H; Hosseinkhani S
    Biochem J; 2008 May; 412(1):27-33. PubMed ID: 18251715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Lineage of Artificial Luciferases for Mammalian Cell Imaging.
    Kim SB; Fujii R
    Methods Mol Biol; 2021; 2274():43-51. PubMed ID: 34050461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creation of artificial luciferases for bioassays.
    Kim SB; Torimura M; Tao H
    Bioconjug Chem; 2013 Dec; 24(12):2067-75. PubMed ID: 24237362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thr226 is a key residue for bioluminescence spectra determination in beetle luciferases.
    Viviani V; Uchida A; Suenaga N; Ryufuku M; Ohmiya Y
    Biochem Biophys Res Commun; 2001 Feb; 280(5):1286-91. PubMed ID: 11162668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral-resolved gene technology for multiplexed bioluminescence and high-content screening.
    Michelini E; Cevenini L; Mezzanotte L; Ablamsky D; Southworth T; Branchini B; Roda A
    Anal Chem; 2008 Jan; 80(1):260-7. PubMed ID: 18031021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circularly permutated bioluminescent probes for illuminating ligand-activated protein dynamics.
    Kim SB; Sato M; Tao H
    Bioconjug Chem; 2008 Dec; 19(12):2480-6. PubMed ID: 19049389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luminescence enhancement of the catalytic 19 kDa protein (KAZ) of Oplophorus luciferase by three amino acid substitutions.
    Inouye S; Sato J; Sahara-Miura Y; Yoshida S; Hosoya T
    Biochem Biophys Res Commun; 2014 Feb; 445(1):157-62. PubMed ID: 24491536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression, purification and luminescence properties of coelenterazine-utilizing luciferases from Renilla, Oplophorus and Gaussia: comparison of substrate specificity for C2-modified coelenterazines.
    Inouye S; Sahara-Miura Y; Sato J; Iimori R; Yoshida S; Hosoya T
    Protein Expr Purif; 2013 Mar; 88(1):150-6. PubMed ID: 23274053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active-site properties of Phrixotrix railroad worm green and red bioluminescence-eliciting luciferases.
    Viviani VR; Arnoldi FG; Venkatesh B; Neto AJ; Ogawa FG; Oehlmeyer AT; Ohmiya Y
    J Biochem; 2006 Oct; 140(4):467-74. PubMed ID: 16963787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of enzyme-substrate pairing for bioluminescence imaging of gene transfer using Renilla and Gaussia luciferases.
    Kimura T; Hiraoka K; Kasahara N; Logg CR
    J Gene Med; 2010 Jun; 12(6):528-37. PubMed ID: 20527045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.