These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 21951620)
41. Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. Ekeberg O; Pearson K J Neurophysiol; 2005 Dec; 94(6):4256-68. PubMed ID: 16049149 [TBL] [Abstract][Full Text] [Related]
42. Motion analysis of articulated objects from monocular images. Zhang X; Liu Y; Huang TS IEEE Trans Pattern Anal Mach Intell; 2006 Apr; 28(4):625-36. PubMed ID: 16566510 [TBL] [Abstract][Full Text] [Related]
43. Tracking in low frame rate video: a cascade particle filter with discriminative observers of different life spans. Li Y; Ai H; Yamashita T; Lao S; Kawade M IEEE Trans Pattern Anal Mach Intell; 2008 Oct; 30(10):1728-40. PubMed ID: 18703827 [TBL] [Abstract][Full Text] [Related]
44. Using a motion-capture system to record dynamic articulation for application in CAD/CAM software. Röhrle O; Waddell JN; Foster KD; Saini H; Pullan AJ J Prosthodont; 2009 Dec; 18(8):703-10. PubMed ID: 19754645 [TBL] [Abstract][Full Text] [Related]
45. The circadian control of calling song and walking activity patterns in male crickets (Teleogryllus commodus). Wiedenmann G; Krüger-Alef K; Martin W Exp Biol; 1988; 47(3):127-37. PubMed ID: 3384069 [TBL] [Abstract][Full Text] [Related]
46. Flight dynamics and control of evasive maneuvers: the fruit fly's takeoff. Zabala FA; Card GM; Fontaine EI; Dickinson MH; Murray RM IEEE Trans Biomed Eng; 2009 Sep; 56(9):2295-8. PubMed ID: 19643699 [TBL] [Abstract][Full Text] [Related]
47. Flight and hearing: ultrasound sensitivity differs between flight-capable and flight-incapable morphs of a wing-dimorphic cricket species. Pollack GS; Martins R J Exp Biol; 2007 Sep; 210(Pt 18):3160-4. PubMed ID: 17766292 [TBL] [Abstract][Full Text] [Related]
48. Applications of video mixing and digital overlay to neuroethology. Hartmann MJ; Assad C; Rasnow B; Bower JM Methods; 2000 Aug; 21(4):385-91. PubMed ID: 10964581 [TBL] [Abstract][Full Text] [Related]
49. Principal axis-based correspondence between multiple cameras for people tracking. Hu W; Hu M; Zhou X; Tan T; Lou J; Maybank S IEEE Trans Pattern Anal Mach Intell; 2006 Apr; 28(4):663-71. PubMed ID: 16566515 [TBL] [Abstract][Full Text] [Related]
51. Synthesis of natural arm swing motion in human bipedal walking. Park J J Biomech; 2008; 41(7):1417-26. PubMed ID: 18417138 [TBL] [Abstract][Full Text] [Related]
52. A semi-automated software tool to study treadmill locomotion in the rat: from experiment videos to statistical gait analysis. Gravel P; Tremblay M; Leblond H; Rossignol S; de Guise JA J Neurosci Methods; 2010 Jul; 190(2):279-88. PubMed ID: 20471995 [TBL] [Abstract][Full Text] [Related]
53. Computer-assisted 3D kinematic analysis of all leg joints in walking insects. Bender JA; Simpson EM; Ritzmann RE PLoS One; 2010 Oct; 5(10):e13617. PubMed ID: 21049024 [TBL] [Abstract][Full Text] [Related]
54. Characterization of locomotor-related spike activity in protocerebrum of freely walking cricket. Kai K; Okada J Zoolog Sci; 2013 Jul; 30(7):591-601. PubMed ID: 23829220 [TBL] [Abstract][Full Text] [Related]
55. Auditory modulation of wind-elicited walking behavior in the cricket Gryllus bimaculatus. Fukutomi M; Someya M; Ogawa H J Exp Biol; 2015 Dec; 218(Pt 24):3968-77. PubMed ID: 26519512 [TBL] [Abstract][Full Text] [Related]
56. Sensitive period in which walking affects recovery of direction of wind-evoked escape in the cricket Gryllus bimaculatus. Takuwa H; Kanou M Zoolog Sci; 2007 Apr; 24(4):331-7. PubMed ID: 17867831 [TBL] [Abstract][Full Text] [Related]
57. A novel semi-automated method of tracking fetal movements. Bhaskar S; Surlea C; Mone F; Milligan P; Ong S Ir Med J; 2014 Sep; 107(8):246. PubMed ID: 25282968 [TBL] [Abstract][Full Text] [Related]
58. Step by step and frame by frame - Workflow for efficient motion tracking of high-speed movements in animals. Koehnsen A; Kambach J; Büsse S Zoology (Jena); 2020 Aug; 141():125800. PubMed ID: 32570134 [TBL] [Abstract][Full Text] [Related]
59. Internal state transition to switch behavioral strategies in cricket phonotaxis. Hommaru N; Shidara H; Ando N; Ogawa H J Exp Biol; 2020 Nov; 223(Pt 22):. PubMed ID: 32943581 [TBL] [Abstract][Full Text] [Related]
60. Crickets alter wind-elicited escape strategies depending on acoustic context. Fukutomi M; Ogawa H Sci Rep; 2017 Nov; 7(1):15158. PubMed ID: 29123249 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]