These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 21952217)

  • 21. Bioengineered microbial platforms for biomass-derived biofuel production - A review.
    Lu H; Yadav V; Zhong M; Bilal M; Taherzadeh MJ; Iqbal HMN
    Chemosphere; 2022 Feb; 288(Pt 2):132528. PubMed ID: 34637864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production.
    Ko JK; Lee SM
    Curr Opin Biotechnol; 2018 Apr; 50():72-80. PubMed ID: 29195120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae.
    Paramasivan K; Mutturi S
    Crit Rev Biotechnol; 2017 Dec; 37(8):974-989. PubMed ID: 28427280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving heterologous protein expression in
    Sebesta J; Peebles CA
    Metab Eng Commun; 2020 Jun; 10():e00117. PubMed ID: 31908923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae.
    Tippmann S; Chen Y; Siewers V; Nielsen J
    Biotechnol J; 2013 Dec; 8(12):1435-44. PubMed ID: 24227704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology.
    Clomburg JM; Gonzalez R
    Appl Microbiol Biotechnol; 2010 Mar; 86(2):419-34. PubMed ID: 20143230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic engineering of yeast, filamentous fungi and bacteria for terpene production and applications in food industry.
    Liang Z; Zhi H; Fang Z; Zhang P
    Food Res Int; 2021 Sep; 147():110487. PubMed ID: 34399483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered Saccharomyces cerevisiae.
    Sun L; Jin YS
    Biotechnol J; 2021 Apr; 16(4):e2000142. PubMed ID: 33135317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tailored carbon partitioning for phototrophic production of (E)-α-bisabolene from the green microalga Chlamydomonas reinhardtii.
    Wichmann J; Baier T; Wentnagel E; Lauersen KJ; Kruse O
    Metab Eng; 2018 Jan; 45():211-222. PubMed ID: 29258965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial engineering for the production of advanced biofuels.
    Peralta-Yahya PP; Zhang F; del Cardayre SB; Keasling JD
    Nature; 2012 Aug; 488(7411):320-8. PubMed ID: 22895337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthesis of advanced biofuel farnesyl acetate using engineered Escherichia coli.
    Guo D; Kong S; Zhang L; Pan H; Wang C; Liu Z
    Bioresour Technol; 2018 Dec; 269():577-580. PubMed ID: 30181019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering strategies for sesquiterpene production in microorganism.
    Liu CL; Xue K; Yang Y; Liu X; Li Y; Lee TS; Bai Z; Tan T
    Crit Rev Biotechnol; 2022 Feb; 42(1):73-92. PubMed ID: 34256675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli.
    Bokinsky G; Peralta-Yahya PP; George A; Holmes BM; Steen EJ; Dietrich J; Lee TS; Tullman-Ercek D; Voigt CA; Simmons BA; Keasling JD
    Proc Natl Acad Sci U S A; 2011 Dec; 108(50):19949-54. PubMed ID: 22123987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improvement in D-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering.
    Promdonkoy P; Mhuantong W; Champreda V; Tanapongpipat S; Runguphan W
    J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):497-510. PubMed ID: 32430798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome mining of cryptic bisabolenes that were biosynthesized by intramembrane terpene synthases from
    Hewage RT; Tseng CC; Liang SY; Lai CY; Lin HC
    Philos Trans R Soc Lond B Biol Sci; 2023 Feb; 378(1871):20220033. PubMed ID: 36633275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Genetic engineering of microbial metabolic pathway for production of advanced biodiesel].
    Fu AS; Liu R; Zhu J; Liu TG
    Yi Chuan; 2011 Oct; 33(10):1121-33. PubMed ID: 21993287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From fields to fuels: recent advances in the microbial production of biofuels.
    Kung Y; Runguphan W; Keasling JD
    ACS Synth Biol; 2012 Nov; 1(11):498-513. PubMed ID: 23656227
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic engineering of yeast for production of fuels and chemicals.
    Nielsen J; Larsson C; van Maris A; Pronk J
    Curr Opin Biotechnol; 2013 Jun; 24(3):398-404. PubMed ID: 23611565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels.
    Mewalal R; Rai DK; Kainer D; Chen F; Külheim C; Peter GF; Tuskan GA
    Trends Biotechnol; 2017 Mar; 35(3):227-240. PubMed ID: 27622303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase.
    Ignea C; Trikka FA; Nikolaidis AK; Georgantea P; Ioannou E; Loupassaki S; Kefalas P; Kanellis AK; Roussis V; Makris AM; Kampranis SC
    Metab Eng; 2015 Jan; 27():65-75. PubMed ID: 25446975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.