These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21952489)

  • 1. SymGF: a symbolic tool for quantum transport analysis and its application to a double quantum dot system.
    Feng Z; Sun QF; Wan L; Guo H
    J Phys Condens Matter; 2011 Oct; 23(41):415301. PubMed ID: 21952489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function.
    Dahnovsky Y
    J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and current noise characteristics of a T-shape double-quantum-dot system.
    Brown K; Crisan M; Tifrea I
    J Phys Condens Matter; 2009 May; 21(21):215604. PubMed ID: 21825553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of Coulomb interactions on thermoelectric properties of quantum dots.
    Zimbovskaya NA
    J Chem Phys; 2014 Mar; 140(10):104706. PubMed ID: 24628195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical study of molecular conduction. III. A nonequilibrium-Green's-function-based Hartree-Fock approach.
    Shimazaki T; Xue Y; Ratner MA; Yamashita K
    J Chem Phys; 2006 Mar; 124(11):114708. PubMed ID: 16555911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new approach to time-dependent transport through an interacting quantum dot within the Keldysh formalism.
    Vovchenko V; Anchishkin D; Azema J; Lombardo P; Hayn R; Daré AM
    J Phys Condens Matter; 2014 Jan; 26(1):015306. PubMed ID: 24292208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-dependent quantum transport through an interacting quantum dot beyond sequential tunneling: second-order quantum rate equations.
    Dong B; Ding GH; Lei XL
    J Phys Condens Matter; 2015 May; 27(20):205303. PubMed ID: 25950191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of Coulomb interactions on nonlinear thermovoltage and thermocurrent in quantum dots.
    Zimbovskaya NA
    J Chem Phys; 2015 Jun; 142(24):244310. PubMed ID: 26133431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium Kondo effect in a graphene-coupled quantum dot in the presence of a magnetic field.
    Máthé L; Grosu I
    Beilstein J Nanotechnol; 2020; 11():225-239. PubMed ID: 32082962
    [No Abstract]   [Full Text] [Related]  

  • 10. Adiabatic charge and spin pumping through interacting quantum dots.
    Deus F; Hernández AR; Continentino MA
    J Phys Condens Matter; 2012 Sep; 24(35):356001. PubMed ID: 22885672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonequilibrium perturbation theory in Liouville-Fock space for inelastic electron transport.
    Dzhioev AA; Kosov DS
    J Phys Condens Matter; 2012 Jun; 24(22):225304. PubMed ID: 22585397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Kondo effect in an artificial quantum dot molecule.
    Jeong H; Chang AM; Melloch MR
    Science; 2001 Sep; 293(5538):2221-3. PubMed ID: 11567130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical solver for first-principles transport calculation based on real-space finite-difference method.
    Iwase S; Hoshi T; Ono T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063305. PubMed ID: 26172820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent quantum transport behavior through T-shaped double quantum dots.
    Pan H; Zhao Y
    J Phys Condens Matter; 2009 Jul; 21(26):265501. PubMed ID: 21828472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-equilibrium electronic transport through a quantum dot with strong Coulomb repulsion in the presence of a magnetic field.
    Zhuravel D; Anchishkin DV; Hayn R; Lombardo P; Schäfer S
    J Phys Condens Matter; 2020 Apr; 32(16):165601. PubMed ID: 31778994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green's function formalism coupled with Gaussian broadening of discrete states for quantum transport: application to atomic and molecular wires.
    Tada T; Kondo M; Yoshizawa K
    J Chem Phys; 2004 Oct; 121(16):8050-7. PubMed ID: 15485269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport properties of an Aharonov-Bohm ring with strong interdot Coulomb interaction.
    Liu YS; Chen H; Yang XF
    J Phys Condens Matter; 2007 Jun; 19(24):246201. PubMed ID: 21694045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative Differential Conductance Assisted by Optical Fields in a Single Quantum Dot with Ferromagnetic Electrodes.
    Liu W; Wang F; Tang Z; Liang R
    Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31174366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disorder scattering in magnetic tunnel junctions: theory of nonequilibrium vertex correction.
    Ke Y; Xia K; Guo H
    Phys Rev Lett; 2008 Apr; 100(16):166805. PubMed ID: 18518235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled electron-phonon transport from molecular dynamics with quantum baths.
    Lü JT; Wang JS
    J Phys Condens Matter; 2009 Jan; 21(2):025503. PubMed ID: 21813980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.