These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21952505)

  • 41. Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%.
    Sauvage F; Chen D; Comte P; Huang F; Heiniger LP; Cheng YB; Caruso RA; Graetzel M
    ACS Nano; 2010 Aug; 4(8):4420-5. PubMed ID: 20731428
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of Au-SiO2 asymmetric clusters and their application in ZnO nanosheet-based dye-sensitized solar cells.
    Li H; Yuan K; Zhang Y; Wang J
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5601-8. PubMed ID: 23697666
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrodeposited nanoporous versus nanoparticulate ZnO films of similar roughness for dye-sensitized solar cell applications.
    Guerin VM; Magne C; Pauporté T; Le Bahers T; Rathousky J
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3677-85. PubMed ID: 21082820
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Y3Al5O12:Ce phosphors as a scattering layer for high-efficiency dye sensitized solar cells.
    Zhu G; Wang X; Li H; Pan L; Sun H; Liu X; Lv T; Sun Z
    Chem Commun (Camb); 2012 Jan; 48(7):958-60. PubMed ID: 22113365
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electron transfer properties of organic dye-sensitized solar cells based on indoline sensitizers with ZnO nanoparticles.
    Cheng HM; Hsieh WF
    Nanotechnology; 2010 Dec; 21(48):485202. PubMed ID: 21051799
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing electron collection efficiency and effective diffusion length in dye-sensitized solar cells.
    Wong DK; Ku CH; Chen YR; Chen GR; Wu JJ
    Chemphyschem; 2009 Oct; 10(15):2698-702. PubMed ID: 19777522
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient synthetic access to cationic dendrons and their application for ZnO nanoparticles surface functionalization: new building blocks for dye-sensitized solar cells.
    Gnichwitz JF; Marczak R; Werner F; Lang N; Jux N; Guldi DM; Peukert W; Hirsch A
    J Am Chem Soc; 2010 Dec; 132(50):17910-20. PubMed ID: 21121664
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bifunctional single-crystalline rutile nanorod decorated heterostructural photoanodes for efficient dye-sensitized solar cells.
    Hao F; Lin H; Zhou C; Liu Y; Li J
    Phys Chem Chem Phys; 2011 Sep; 13(35):15918-24. PubMed ID: 21826317
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CdSe quantum-dot-sensitized solar cell with ∼100% internal quantum efficiency.
    Fuke N; Hoch LB; Koposov AY; Manner VW; Werder DJ; Fukui A; Koide N; Katayama H; Sykora M
    ACS Nano; 2010 Nov; 4(11):6377-86. PubMed ID: 20961101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Continuous wet-process growth of ZnO nanoarrays for wire-shaped photoanode of dye-sensitized solar cell.
    Tao P; Guo W; Du J; Tao C; Qing S; Fan X
    J Colloid Interface Sci; 2016 Sep; 478():172-80. PubMed ID: 27289432
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced omnidirectional light harvesting in dye-sensitized solar cells with periodic ZnO nanoflower photoelectrodes.
    Lai FI; Yang JF; Hsu YC; Kuo SY
    J Colloid Interface Sci; 2020 Mar; 562():63-70. PubMed ID: 31837620
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells.
    Seow ZL; Wong AS; Thavasi V; Jose R; Ramakrishna S; Ho GW
    Nanotechnology; 2009 Jan; 20(4):045604. PubMed ID: 19417324
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells.
    Kim C; Choi H; Kim JI; Lee S; Kim J; Lee W; Hwang T; Kang S; Moon T; Park B
    Nanoscale Res Lett; 2014; 9(1):295. PubMed ID: 24982606
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The fabrication of a patterned ZnO nanorod array for high brightness LEDs.
    Park H; Byeon KJ; Yang KY; Cho JY; Lee H
    Nanotechnology; 2010 Sep; 21(35):355304. PubMed ID: 20689168
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dye-sensitized solar cells based on WO3.
    Zheng H; Tachibana Y; Kalantar-Zadeh K
    Langmuir; 2010 Dec; 26(24):19148-52. PubMed ID: 21077615
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells.
    Martinson AB; McGarrah JE; Parpia MO; Hupp JT
    Phys Chem Chem Phys; 2006 Oct; 8(40):4655-9. PubMed ID: 17047762
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Solid-state dye-sensitized solar cells based on ZnO nanocrystals.
    Boucharef M; Di Bin C; Boumaza MS; Colas M; Snaith HJ; Ratier B; Bouclé J
    Nanotechnology; 2010 May; 21(20):205203. PubMed ID: 20418608
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design of SnO₂ Aggregate/Nanosheet Composite Structures Based on Function-Matching Strategy for Enhanced Dye-Sensitized Solar Cell Performance.
    Wang D; Liu S; Shao M; Zhao J; Gu Y; Li Q; Zhang X; Zhao J; Fang Y
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30235798
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes.
    Wang H; Liu M; Zhang M; Wang P; Miura H; Cheng Y; Bell J
    Phys Chem Chem Phys; 2011 Oct; 13(38):17359-66. PubMed ID: 21881630
    [TBL] [Abstract][Full Text] [Related]  

  • 60. First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances.
    Labat F; Ciofini I; Hratchian HP; Frisch M; Raghavachari K; Adamo C
    J Am Chem Soc; 2009 Oct; 131(40):14290-8. PubMed ID: 19761184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.