These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2195251)

  • 1. Protein profiles of microsections of the fetal and adult human lens during development and ageing.
    Bours J; Wegener A; Hofmann D; Födisch HJ; Hockwin O
    Mech Ageing Dev; 1990 May; 54(1):13-27. PubMed ID: 2195251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-related changes in water and crystallin content of the fetal and adult human lens, demonstrated by a microsectioning technique.
    Bours J; Födisch HJ; Hockwin O
    Ophthalmic Res; 1987; 19(4):235-9. PubMed ID: 3320839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin.
    Babizhayev MA; Bours J; Utikal KJ
    Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-soluble and insoluble crystallins of the developing human fetal lens, analyzed by agarose/polyacrylamide thin-layer isoelectric focusing.
    Ahrend MH; Bours J; Födisch HJ
    Ophthalmic Res; 1987; 19(3):150-6. PubMed ID: 3658325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative investigations on water-soluble crystallins of the embryonic, fetal, and postnatal human lens during development and ageing.
    Trifonova N; Stamenova M; Boulanov I; Goranov M; Bours J
    Ger J Ophthalmol; 1996 Nov; 5(6):454-60. PubMed ID: 9479536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of Scheimpflug photography of the anterior eye segment with biochemical analysis of the lens. Application of a frozen-sectioning technique to investigate differences in protein distribution of single lens layers.
    Hockwin O; Ahrend MH; Bours J
    Graefes Arch Clin Exp Ophthalmol; 1986; 224(3):265-70. PubMed ID: 3519371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher glycation of beta L- and beta S-crystallins in the anterior lens cortex and maximum glycation of gamma-crystallins in the bovine lens nucleus, demonstrated by frozen sectioning, isoelectric focusing and lectin staining.
    Bours J; Ahrend MH; Utikal KJ
    Ophthalmic Res; 1998; 30(4):233-43. PubMed ID: 9667054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallin profiles of calf and bovine lens microsections, stained for free sulfhydryl groups and proteins.
    Bours J; Ahrend MH; Hockwin O
    Lens Eye Toxic Res; 1990; 7(3-4):531-45. PubMed ID: 2100178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-insoluble high-molecular-weight and alpha-crystallins as the source of the Scheimpflug light scattering pattern in the rat lens.
    Bours J; Ahrend MH; Wegener A; Hockwin O
    Ophthalmic Res; 1990; 22 Suppl 1():90-4. PubMed ID: 2388761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of water-soluble crystallins in microsectioned cataractous lenses from one hundred Egyptian patients.
    Bours J; el-Layeh AA; Emarah MH; Rink H
    Ophthalmic Res; 1995; 27 Suppl 1():54-61. PubMed ID: 8577463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes of water-soluble proteins of human eye lens during the prenatal period.
    Trifonova NL; Alexiev C; Stamenova M; Goranov M
    Ophthalmic Res; 1993; 25(3):162-71. PubMed ID: 8336902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The immunological characterization and isoelectric focusing of water-soluble proteins in the lens related to aging (author's transl)].
    Bours J; Hockwin O
    Klin Monbl Augenheilkd; 1977 Jan; 170(1):51-9. PubMed ID: 557701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-dependent variations in the distribution of rat lens water-soluble crystallins. Size fractionation and molecular weight determination.
    Bindels JG; Bours J; Hoenders HJ
    Mech Ageing Dev; 1983 Jan; 21(1):1-13. PubMed ID: 6865495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemistry of the ageing rat lens. II. Isoelectric focusing of water-soluble crystallins.
    Bours J; Hockwin O
    Ophthalmic Res; 1983; 15(5):234-9. PubMed ID: 6646626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens.
    Su SP; McArthur JD; Truscott RJ; Aquilina JA
    Biochim Biophys Acta; 2011 May; 1814(5):647-56. PubMed ID: 21447408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased association of aged alpha crystallins with gamma crystallins.
    Takemoto LJ; Ponce AA
    Exp Eye Res; 2006 Oct; 83(4):793-7. PubMed ID: 16712838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human beta crystallins: regional and age related changes.
    Alcala J; Katar M; Rudner G; Maisel H
    Curr Eye Res; 1988 Apr; 7(4):353-9. PubMed ID: 3371073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of lens alpha and gamma crystallins during aging of the bovine lens.
    Peterson J; Radke G; Takemoto L
    Exp Eye Res; 2005 Dec; 81(6):680-9. PubMed ID: 15967431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mass distribution of water-soluble crystallins from the human foetal lens during development.
    Bessems GJ; Bours J; Hofmann D; Födisch HJ
    J Chromatogr; 1990 Aug; 529(2):277-86. PubMed ID: 2229247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontogeny of human lens crystallins.
    Thomson JA; Augusteyn RC
    Exp Eye Res; 1985 Mar; 40(3):393-410. PubMed ID: 4065234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.