These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 2195255)

  • 1. On the natural tendency to progressive loss of remaining kidney function in patients with impaired renal function.
    Hebert LA; Bay WH
    Med Clin North Am; 1990 Jul; 74(4):1011-24. PubMed ID: 2195255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dietary protein intake and progressive glomerular sclerosis: the role of capillary hypertension and hyperperfusion in the progression of renal disease.
    Meyer TW; Anderson S; Brenner BM
    Ann Intern Med; 1983 May; 98(5 Pt 2):832-8. PubMed ID: 6847022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of hemodynamic factors in the initiation and progression of renal disease.
    Anderson S; Meyer TW; Brenner BM
    J Urol; 1985 Mar; 133(3):363-8. PubMed ID: 3882999
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of dietary protein in progressive renal disease.
    Brouhard BH
    Am J Dis Child; 1986 Jul; 140(7):630-7. PubMed ID: 3521257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of glomerular injury or nephron loss in a normotensive rat remnant kidney model.
    Bidani AK; Mitchell KD; Schwartz MM; Navar LG; Lewis EJ
    Kidney Int; 1990 Jul; 38(1):28-38. PubMed ID: 2385084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of antihypertensive therapy on progressive kidney damage.
    Dworkin LD; Benstein JA
    Am J Hypertens; 1989 Jun; 2(6 Pt 2):162S-172S. PubMed ID: 2665787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease.
    Brenner BM; Meyer TW; Hostetter TH
    N Engl J Med; 1982 Sep; 307(11):652-9. PubMed ID: 7050706
    [No Abstract]   [Full Text] [Related]  

  • 8. Pathways to nephron loss starting from glomerular diseases-insights from animal models.
    Kriz W; LeHir M
    Kidney Int; 2005 Feb; 67(2):404-19. PubMed ID: 15673288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mechanisms of progression of glomerular sclerosis in chronic renal diseases in man].
    Garini G; Allegri L; Arisi L
    Ann Ital Med Int; 1989; 4(3):184-94. PubMed ID: 2702030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathophysiology of hypertensive renal damage.
    Ritz E; Fliser D; Siebels M
    Am J Hypertens; 1993 Jul; 6(7 Pt 2):241S-244S. PubMed ID: 8398007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining new tools to assess renal function and morphology: a holistic approach to study the effects of aging and a congenital nephron deficit.
    Geraci S; Chacon-Caldera J; Cullen-McEwen L; Schad LR; Sticht C; Puelles VG; Bertram JF; Gretz N
    Am J Physiol Renal Physiol; 2017 Sep; 313(3):F576-F584. PubMed ID: 28490528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal ageing.
    Martin JE; Sheaff MT
    J Pathol; 2007 Jan; 211(2):198-205. PubMed ID: 17200944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal reserve in patients with high blood pressure.
    Gabbai FB
    Semin Nephrol; 1995 Sep; 15(5):482-7. PubMed ID: 8525152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Is the kidney lesion caused by hypertension really ischemic?].
    Gabbai F; Herrera Acosta J
    Arch Inst Cardiol Mex; 1986; 56(1):81-7. PubMed ID: 2943250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progressive glomerular injury: roles of dietary protein and compensatory hypertrophy.
    Hostetter TH
    Pharmacol Rev; 1984 Jun; 36(2 Suppl):101S-107S. PubMed ID: 6382347
    [No Abstract]   [Full Text] [Related]  

  • 16. The aging kidney: structural changes.
    Pannarale G; Carbone R; Del Mastro G; Gallo C; Gattullo V; Natalicchio L; Navarra A; Tedesco A
    J Nephrol; 2010; 23 Suppl 15():S37-40. PubMed ID: 20872369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interrelationships among filtration surface area, blood pressure, and chronic renal disease.
    Brenner BM; Anderson S
    J Cardiovasc Pharmacol; 1992; 19 Suppl 6():S1-7. PubMed ID: 1382155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aortic Blood Flow Reversal Determines Renal Function: Potential Explanation for Renal Dysfunction Caused by Aortic Stiffening in Hypertension.
    Hashimoto J; Ito S
    Hypertension; 2015 Jul; 66(1):61-7. PubMed ID: 25916721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of time on remnant glomerular function.
    Bregman R; Boim MA; Schor N
    Braz J Med Biol Res; 1993 Feb; 26(2):219-28. PubMed ID: 8257924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of hypertension in renal disease.
    Baldwin DS; Neugarten J
    Am J Kidney Dis; 1985 Apr; 5(4):A57-70. PubMed ID: 3887904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.