These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21952652)

  • 1. Rational control of a polyacetylene helix by a pendant rotaxane switch.
    Ishiwari F; Nakazono K; Koyama Y; Takata T
    Chem Commun (Camb); 2011 Nov; 47(42):11739-41. PubMed ID: 21952652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rational design for the directed helicity change of polyacetylene using dynamic rotaxane mobility by means of through-space chirality transfer.
    Ishiwari F; Fukasawa K; Sato T; Nakazono K; Koyama Y; Takata T
    Chemistry; 2011 Oct; 17(43):12067-75. PubMed ID: 21922578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and chiroptical properties of a helical poly(phenylacetylene) bearing optically active pyrene pendants.
    Lin H; Morino K; Yashima E
    Chirality; 2008 Mar; 20(3-4):386-92. PubMed ID: 17724655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of Single-Handed Helicity of Polyacetylenes Using Mechanically Chiral Rotaxanes as Chiral Sources.
    Ishiwari F; Nakazono K; Koyama Y; Takata T
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):14858-14862. PubMed ID: 28973787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and helical structure of poly(1-methylpropargyl ester)s with various side chains.
    Suzuki Y; Shiotsuki M; Sanda F; Masuda T
    Chem Asian J; 2008 Dec; 3(12):2075-81. PubMed ID: 18770871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual memory of enantiomeric helices in a polyacetylene induced by a single enantiomer.
    Miyagawa T; Furuko A; Maeda K; Katagiri H; Furusho Y; Yashima E
    J Am Chem Soc; 2005 Apr; 127(14):5018-9. PubMed ID: 15810826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of polyyne rotaxanes.
    Movsisyan LD; Kondratuk DV; Franz M; Thompson AL; Tykwinski RR; Anderson HL
    Org Lett; 2012 Jul; 14(13):3424-6. PubMed ID: 22708549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The first suspension polymerization for preparing optically active microparticles purely constructed from chirally helical substituted polyacetylenes.
    Zhang H; Song J; Deng J
    Macromol Rapid Commun; 2014 Jul; 35(13):1216-23. PubMed ID: 24715681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microspheres consisting of optically active helical substituted polyacetylenes: preparation via suspension polymerization and their chiral recognition/release properties.
    Chen B; Song C; Luo X; Deng J; Yang W
    Macromol Rapid Commun; 2011 Dec; 32(24):1986-92. PubMed ID: 22102401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optically active helical substituted polyacetylenes showing reversible helix inversion in emulsion and solution state.
    Huang Y; Zhang Y; Yang W; Deng J
    Macromol Rapid Commun; 2012 Feb; 33(3):212-7. PubMed ID: 22135115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative active transport in [2]rotaxane using a one-shot acylation reaction toward the linear molecular motor.
    Makita Y; Kihara N; Takata T
    J Org Chem; 2008 Dec; 73(23):9245-50. PubMed ID: 18954114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic Fe3O4-PS-polyacetylene composite microspheres showing chirality derived from helical substituted polyacetylene.
    Liu D; Zhang L; Li M; Yang W; Deng J
    Macromol Rapid Commun; 2012 Apr; 33(8):672-7. PubMed ID: 22328313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible polyphenylacetylene helix conversion driven by a thermoresponsive rotaxane switch in the solid state.
    Zhu N; Nakazono K; Takata T
    Chem Commun (Camb); 2016 Mar; 52(18):3647-9. PubMed ID: 26848639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncovalent chiral functionalization of graphene with optically active helical polymers.
    Ren C; Chen Y; Zhang H; Deng J
    Macromol Rapid Commun; 2013 Sep; 34(17):1368-74. PubMed ID: 23852622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the diacetylene position on the chromatic properties of polydiacetylenes from self-assembled peptide amphiphiles.
    van den Heuvel M; Löwik DW; van Hest JC
    Biomacromolecules; 2010 Jun; 11(6):1676-83. PubMed ID: 20499861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible helix-random coil transition of poly(m-phenylenediethynylene) by a rotaxane switch.
    Suzuki S; Ishiwari F; Nakazono K; Takata T
    Chem Commun (Camb); 2012 Jul; 48(52):6478-80. PubMed ID: 22453762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porphyrin-functionalised rotaxanes for anion recognition.
    Brown A; Beer PD
    Dalton Trans; 2012 Jan; 41(1):118-29. PubMed ID: 22075843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric benzoin condensation catalyzed by chiral rotaxanes tethering a thiazolium salt moiety via the cooperation of the component: can rotaxane be an effective reaction field?
    Tachibana Y; Kihara N; Takata T
    J Am Chem Soc; 2004 Mar; 126(11):3438-9. PubMed ID: 15025467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly twisted helical polyacetylene with morphology free from the bundle of fibrils synthesized in chiral nematic liquid crystal reaction field.
    Goh M; Kyotani M; Akagi K
    J Am Chem Soc; 2007 Jul; 129(27):8519-27. PubMed ID: 17579404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene Oxide (GO) as Stabilizer for Preparing Chirally Helical Polyacetylene/GO Hybrid Microspheres via Suspension Polymerization.
    Li J; Deng J; Li W; Pan K; Deng J
    Macromol Rapid Commun; 2017 Nov; 38(21):. PubMed ID: 28921736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.