These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 21952786)

  • 81. Probing the coordination properties of glutathione with transition metal ions (Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+) by density functional theory.
    Liu J; Liu H; Li Y; Wang H
    J Biol Phys; 2014 Sep; 40(4):313-23. PubMed ID: 24923419
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The radical ion chemistry of S-nitrosylated peptides.
    Jones AW; Winn PJ; Cooper HJ
    J Am Soc Mass Spectrom; 2012 Dec; 23(12):2063-74. PubMed ID: 23055078
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Effects of transition metal ion identity and π-cation interactions in metal-bis(peptide) complexes containing phenylalanine.
    Utley B; Angel LA
    Eur J Mass Spectrom (Chichester); 2010; 16(6):631-43. PubMed ID: 21173465
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The non-covalent complexes of α- or γ-cyclodextrin with divalent metal cations determined by mass spectrometry.
    Chen X; Chu Y; Gu L; Zhou M; Ding CF
    Carbohydr Res; 2020 Jun; 492():107987. PubMed ID: 32251851
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Protein kinase A phosphorylation characterized by tandem Fourier transform ion cyclotron resonance mass spectrometry.
    Chalmers MJ; Håkansson K; Johnson R; Smith R; Shen J; Emmett MR; Marshall AG
    Proteomics; 2004 Apr; 4(4):970-81. PubMed ID: 15048979
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Electron capture dissociation mass spectrometry of metallo-supramolecular complexes.
    Kaczorowska MA; Hotze AC; Hannon MJ; Cooper HJ
    J Am Soc Mass Spectrom; 2010 Feb; 21(2):300-9. PubMed ID: 20004114
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Loss of internal backbone carbonyls: additional evidence for sequence-scrambling in collision-induced dissociation of y-type ions.
    Harper B; Miladi M; Solouki T
    J Am Soc Mass Spectrom; 2014 Oct; 25(10):1716-29. PubMed ID: 25070583
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Electron capture dissociation of polypeptides in a three-dimensional quadrupole ion trap: Implementation and first results.
    Silivra OA; Kjeldsen F; Ivonin IA; Zubarev RA
    J Am Soc Mass Spectrom; 2005 Jan; 16(1):22-7. PubMed ID: 15653360
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Reactivity of hydrated monovalent first row transition metal ions M(+)(H2O)n, M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn, toward molecular oxygen, nitrous oxide, and carbon dioxide.
    van der Linde C; Hemmann S; Höckendorf RF; Balaj OP; Beyer MK
    J Phys Chem A; 2013 Feb; 117(6):1011-20. PubMed ID: 22506540
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Sequencing of peptide-derived Amadori products by the electron capture dissociation method.
    Stefanowicz P; Kijewska M; Szewczuk Z
    J Mass Spectrom; 2009 Jul; 44(7):1047-52. PubMed ID: 19306261
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Abundant b-type ions produced in electron capture dissociation of peptides without basic amino acid residues.
    Liu H; Håkansson K
    J Am Soc Mass Spectrom; 2007 Nov; 18(11):2007-13. PubMed ID: 17904379
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A comparative study of the collision induced dissociation and the electron capture dissociation of model peptides using ESI-FTMS.
    Fung YM; Duan L; Chan TW
    Eur J Mass Spectrom (Chichester); 2004; 10(4):449-57. PubMed ID: 15302969
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The effect of phosphorylation on the electron capture dissociation of peptide ions.
    Creese AJ; Cooper HJ
    J Am Soc Mass Spectrom; 2008 Sep; 19(9):1263-74. PubMed ID: 18585055
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Radical stability directs electron capture and transfer dissociation of β-amino acids in peptides.
    Ben Hamidane H; Vorobyev A; Larregola M; Lukaszuk A; Tourwé D; Lavielle S; Karoyan P; Tsybin YO
    Chemistry; 2010 Apr; 16(15):4612-22. PubMed ID: 20235239
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Coordination sphere tuning of the electron transfer dissociation behavior of Cu(II)-peptide complexes.
    Dong J; Vachet RW
    J Am Soc Mass Spectrom; 2012 Feb; 23(2):321-9. PubMed ID: 22161629
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer.
    Mirgorodskaya E; Roepstorff P; Zubarev RA
    Anal Chem; 1999 Oct; 71(20):4431-6. PubMed ID: 10546526
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Improvement of electron capture efficiency by resonant excitation.
    Mormann M; Peter-Katalinić J
    Rapid Commun Mass Spectrom; 2003; 17(19):2208-14. PubMed ID: 14515319
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Two-dimensional ECD FT-ICR mass spectrometry of peptides and glycopeptides.
    van Agthoven MA; Chiron L; Coutouly MA; Delsuc MA; Rolando C
    Anal Chem; 2012 Jul; 84(13):5589-95. PubMed ID: 22762261
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry in the electron energy range 0-50 eV.
    Tsybin YO; Witt M; Baykut G; Håkansson P
    Rapid Commun Mass Spectrom; 2004; 18(14):1607-13. PubMed ID: 15282786
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Electron capture dissociation of b (2+) peptide fragments reveals the presence of the acylium ion structure.
    Haselmann KF; Budnik BA; Zubarev RA
    Rapid Commun Mass Spectrom; 2000; 14(23):2242-6. PubMed ID: 11114035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.