These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 21953265)
1. Negative ion fragmentation of cysteic acid containing peptides: cysteic acid as a fixed negative charge. Williams BJ; Barlow CK; Kmiec KL; Russell WK; Russell DH J Am Soc Mass Spectrom; 2011 Sep; 22(9):1622-30. PubMed ID: 21953265 [TBL] [Abstract][Full Text] [Related]
2. Effect of cysteic acid position on the negative ion fragmentation of proteolytic derived peptides. Williams BJ; Kmiec KL; Russell WK; Russell DH J Am Soc Mass Spectrom; 2011 Jan; 22(1):31-7. PubMed ID: 21472541 [TBL] [Abstract][Full Text] [Related]
3. Occurrence of C-terminal residue exclusion in peptide fragmentation by ESI and MALDI tandem mass spectrometry. Dupré M; Cantel S; Martinez J; Enjalbal C J Am Soc Mass Spectrom; 2012 Feb; 23(2):330-46. PubMed ID: 22095165 [TBL] [Abstract][Full Text] [Related]
4. Effects of cysteic acid groups on the gas-phase reactivity and dissociation of [M + 4H]4+ ions from insulin chain B. wing NP; Cassady CJ J Am Soc Mass Spectrom; 1999 Oct; 10(10):928-40. PubMed ID: 10497806 [TBL] [Abstract][Full Text] [Related]
5. Negative ion dissociation of peptides containing hydroxyl side chains. Pu D; Cassady CJ Rapid Commun Mass Spectrom; 2008; 22(2):91-100. PubMed ID: 18059044 [TBL] [Abstract][Full Text] [Related]
6. High-energy collision induced dissociation of biomolecules: MALDI-TOF/RTOF mass spectrometry in comparison to tandem sector mass spectrometry. Pittenauer E; Allmaier G Comb Chem High Throughput Screen; 2009 Feb; 12(2):137-55. PubMed ID: 19199883 [TBL] [Abstract][Full Text] [Related]
7. Ion/ion reactions of MALDI-derived peptide ions: increased sequence coverage via covalent and electrostatic modification upon charge inversion. Stutzman JR; McLuckey SA Anal Chem; 2012 Dec; 84(24):10679-85. PubMed ID: 23078018 [TBL] [Abstract][Full Text] [Related]
8. Fragmentation chemistry of [M + Cu]+ peptide ions containing an N-terminal arginine. Shields SJ; Bluhm BK; Russell DH J Am Soc Mass Spectrom; 2000 Jul; 11(7):626-38. PubMed ID: 10883818 [TBL] [Abstract][Full Text] [Related]
9. Elucidation of chemical modifier reactivity towards peptides and proteins and the analysis of specific fragmentation by matrix-assisted laser desorption/ionization collision-induced dissociation tandem mass spectrometry. Rühl M; Kühn B; Roos J; Maier TJ; Steinhilber D; Karas M Rapid Commun Mass Spectrom; 2019 May; 33 Suppl 1():40-49. PubMed ID: 29964304 [TBL] [Abstract][Full Text] [Related]
10. Influence of cysteine to cysteic acid oxidation on the collision-activated decomposition of protonated peptides: Evidence for intraionic interactions. Burlet O; Yang CY; Gaskell SJ J Am Soc Mass Spectrom; 1992 May; 3(4):337-44. PubMed ID: 24243044 [TBL] [Abstract][Full Text] [Related]
11. Specific rearrangement reactions of acetylated lysine containing peptide bn (n = 4-7) ion series. Atik AE; Hernandez O; Maître P; Yalcin T J Mass Spectrom; 2014 Dec; 49(12):1290-7. PubMed ID: 25476947 [TBL] [Abstract][Full Text] [Related]
12. Fragmentation behavior of Amadori-peptides obtained by non-enzymatic glycosylation of lysine residues with ADP-ribose in tandem mass spectrometry. Fedorova M; Frolov A; Hoffmann R J Mass Spectrom; 2010 Jun; 45(6):664-9. PubMed ID: 20527035 [TBL] [Abstract][Full Text] [Related]
13. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus. Li Z; Yalcin T; Cassady CJ J Mass Spectrom; 2006 Jul; 41(7):939-49. PubMed ID: 16810639 [TBL] [Abstract][Full Text] [Related]
14. Photodissociation of charge tagged peptides. He Y; Parthasarathi R; Raghavachari K; Reilly JP J Am Soc Mass Spectrom; 2012 Jul; 23(7):1182-90. PubMed ID: 22532332 [TBL] [Abstract][Full Text] [Related]
15. To b or not to b: the ongoing saga of peptide b ions. Harrison AG Mass Spectrom Rev; 2009; 28(4):640-54. PubMed ID: 19338048 [TBL] [Abstract][Full Text] [Related]
16. Characterization of metal-labelled peptides by matrix-assisted laser desorption/ionization mass spectrometry and tandem mass spectrometry. Gregorius B; Schaumlöffel D; Hildebrandt A; Tholey A Rapid Commun Mass Spectrom; 2010 Nov; 24(22):3279-89. PubMed ID: 20973002 [TBL] [Abstract][Full Text] [Related]
17. Comparison of laser-induced dissociation and high-energy collision-induced dissociation using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) for peptide and protein identification. Macht M; Asperger A; Deininger SO Rapid Commun Mass Spectrom; 2004; 18(18):2093-105. PubMed ID: 15378722 [TBL] [Abstract][Full Text] [Related]
18. Comparison of CID spectra of singly charged polypeptide antibiotic precursor ions obtained by positive-ion vacuum MALDI IT/RTOF and TOF/RTOF, AP-MALDI-IT and ESI-IT mass spectrometry. Pittenauer E; Zehl M; Belgacem O; Raptakis E; Mistrik R; Allmaier G J Mass Spectrom; 2006 Apr; 41(4):421-47. PubMed ID: 16604520 [TBL] [Abstract][Full Text] [Related]
19. Gas-phase fragmentation characteristics of benzyl-aminated lysyl-containing tryptic peptides. Simon ES; Papoulias PG; Andrews PC J Am Soc Mass Spectrom; 2010 Sep; 21(9):1624-32. PubMed ID: 20471281 [TBL] [Abstract][Full Text] [Related]
20. A comparison of positive and negative ion collision-induced dissociation for model heptapeptides with one basic residue. Pu D; Clipston NL; Cassady CJ J Mass Spectrom; 2010 Mar; 45(3):297-305. PubMed ID: 20127747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]