These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 21953650)
1. Linear-scaling soft-core scheme for alchemical free energy calculations. Buelens FP; Grubmüller H J Comput Chem; 2012 Jan; 33(1):25-33. PubMed ID: 21953650 [TBL] [Abstract][Full Text] [Related]
2. Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. Steinbrecher T; Mobley DL; Case DA J Chem Phys; 2007 Dec; 127(21):214108. PubMed ID: 18067350 [TBL] [Abstract][Full Text] [Related]
3. New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations. Gapsys V; Seeliger D; de Groot BL J Chem Theory Comput; 2012 Jul; 8(7):2373-82. PubMed ID: 26588970 [TBL] [Abstract][Full Text] [Related]
4. Efficiency of various lattices from hard ball to soft ball: theoretical study of thermodynamic properties of dendrimer liquid crystal from atomistic simulation. Li Y; Lin ST; Goddard WA J Am Chem Soc; 2004 Feb; 126(6):1872-85. PubMed ID: 14871120 [TBL] [Abstract][Full Text] [Related]
5. Avoiding the van der Waals endpoint problem using serial atomic insertion. Boresch S; Bruckner S J Comput Chem; 2011 Aug; 32(11):2449-58. PubMed ID: 21607991 [TBL] [Abstract][Full Text] [Related]
6. Optimal pairwise and non-pairwise alchemical pathways for free energy calculations of molecular transformation in solution phase. Pham TT; Shirts MR J Chem Phys; 2012 Mar; 136(12):124120. PubMed ID: 22462848 [TBL] [Abstract][Full Text] [Related]
7. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 1. Theory. Stephenson BC; Stafford KA; Beers KJ; Blankschtein D J Phys Chem B; 2008 Feb; 112(6):1634-40. PubMed ID: 18198856 [TBL] [Abstract][Full Text] [Related]
8. Simulated scaling method for localized enhanced sampling and simultaneous "alchemical" free energy simulations: a general method for molecular mechanical, quantum mechanical, and quantum mechanical/molecular mechanical simulations. Li H; Fajer M; Yang W J Chem Phys; 2007 Jan; 126(2):024106. PubMed ID: 17228942 [TBL] [Abstract][Full Text] [Related]
9. Efficiency of alchemical free energy simulations. I. A practical comparison of the exponential formula, thermodynamic integration, and Bennett's acceptance ratio method. Bruckner S; Boresch S J Comput Chem; 2011 May; 32(7):1303-19. PubMed ID: 21425288 [TBL] [Abstract][Full Text] [Related]
10. Configurational preferences of arylamide α-helix mimetics via alchemical free energy calculations of relative binding affinities. Fuller JC; Jackson RM; Shirts MR J Phys Chem B; 2012 Sep; 116(35):10856-69. PubMed ID: 22920218 [TBL] [Abstract][Full Text] [Related]
11. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy. Guvench O; Weiser J; Shenkin P; Kolossváry I; Still WC J Comput Chem; 2002 Jan; 23(2):214-21. PubMed ID: 11924735 [TBL] [Abstract][Full Text] [Related]
12. Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs. Harger M; Li D; Wang Z; Dalby K; Lagardère L; Piquemal JP; Ponder J; Ren P J Comput Chem; 2017 Sep; 38(23):2047-2055. PubMed ID: 28600826 [TBL] [Abstract][Full Text] [Related]
13. Linear Basis Function Approach to Efficient Alchemical Free Energy Calculations. 1. Removal of Uncharged Atomic Sites. Naden LN; Pham TT; Shirts MR J Chem Theory Comput; 2014 Mar; 10(3):1128-49. PubMed ID: 26580188 [TBL] [Abstract][Full Text] [Related]
14. Efficiency of alchemical free energy simulations. II. Improvements for thermodynamic integration. Bruckner S; Boresch S J Comput Chem; 2011 May; 32(7):1320-33. PubMed ID: 21425289 [TBL] [Abstract][Full Text] [Related]
15. Alchemical free energy simulations without speed limits. A generic framework to calculate free energy differences independent of the underlying molecular dynamics program. Wieder M; Fleck M; Braunsfeld B; Boresch S J Comput Chem; 2022 Jun; 43(17):1151-1160. PubMed ID: 35485139 [TBL] [Abstract][Full Text] [Related]
16. Free-energy differences between states with different conformational ensembles. Garate JA; Oostenbrink C J Comput Chem; 2013 Jun; 34(16):1398-408. PubMed ID: 23526629 [TBL] [Abstract][Full Text] [Related]
17. A strategy for proline and glycine mutations to proteins with alchemical free energy calculations. Hayes RL; Brooks CL J Comput Chem; 2021 Jun; 42(15):1088-1094. PubMed ID: 33844328 [TBL] [Abstract][Full Text] [Related]
18. Path Integral Computation of Quantum Free Energy Differences Due to Alchemical Transformations Involving Mass and Potential. Pérez A; von Lilienfeld OA J Chem Theory Comput; 2011 Aug; 7(8):2358-69. PubMed ID: 26606611 [TBL] [Abstract][Full Text] [Related]
19. Unorthodox uses of Bennett's acceptance ratio method. König G; Bruckner S; Boresch S J Comput Chem; 2009 Aug; 30(11):1712-8. PubMed ID: 19373838 [TBL] [Abstract][Full Text] [Related]
20. Linear basis function approach to efficient alchemical free energy calculations. 2. Inserting and deleting particles with coulombic interactions. Naden LN; Shirts MR J Chem Theory Comput; 2015 Jun; 11(6):2536-49. PubMed ID: 26575553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]