BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21953825)

  • 1. A screening tool for therapeutic monoclonal antibodies: Identifying the most stable protein and its best formulation based on thioflavin T binding.
    Kayser V; Chennamsetty N; Voynov V; Helk B; Forrer K; Trout BL
    Biotechnol J; 2012 Jan; 7(1):127-32. PubMed ID: 21953825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational stability and aggregation of therapeutic monoclonal antibodies studied with ANS and Thioflavin T binding.
    Kayser V; Chennamsetty N; Voynov V; Helk B; Trout BL
    MAbs; 2011; 3(4):408-11. PubMed ID: 21540645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence dye-based detection of mAb aggregates in CHO culture supernatants.
    Paul AJ; Schwab K; Prokoph N; Haas E; Handrick R; Hesse F
    Anal Bioanal Chem; 2015 Jun; 407(16):4849-56. PubMed ID: 25869484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical evaluation of self-interaction chromatography as a predictive tool for the assessment of protein-protein interactions in protein formulation development: a case study of a therapeutic monoclonal antibody.
    Le Brun V; Friess W; Bassarab S; Mühlau S; Garidel P
    Eur J Pharm Biopharm; 2010 May; 75(1):16-25. PubMed ID: 20102739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of thioflavin T with amyloid fibrils: stoichiometry and affinity of dye binding, absorption spectra of bound dye.
    Sulatskaya AI; Kuznetsova IM; Turoverov KK
    J Phys Chem B; 2011 Oct; 115(39):11519-24. PubMed ID: 21863870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosylation influences on the aggregation propensity of therapeutic monoclonal antibodies.
    Kayser V; Chennamsetty N; Voynov V; Forrer K; Helk B; Trout BL
    Biotechnol J; 2011 Jan; 6(1):38-44. PubMed ID: 20949542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the binding of Thioflavin T to beta-sheet-rich and non-beta-sheet cavities.
    Groenning M; Olsen L; van de Weert M; Flink JM; Frokjaer S; Jørgensen FS
    J Struct Biol; 2007 Jun; 158(3):358-69. PubMed ID: 17289401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting accelerated aggregation rates for monoclonal antibody formulations, and challenges for low-temperature predictions.
    Brummitt RK; Nesta DP; Roberts CJ
    J Pharm Sci; 2011 Oct; 100(10):4234-43. PubMed ID: 21671226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ReFOLD assay for protein formulation studies and prediction of protein aggregation during long-term storage.
    Svilenov H; Winter G
    Eur J Pharm Biopharm; 2019 Apr; 137():131-139. PubMed ID: 30818009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-size-based membrane chromatographic separation and analysis of monoclonal antibody aggregates.
    Wang L; Hale G; Ghosh R
    Anal Chem; 2006 Oct; 78(19):6863-7. PubMed ID: 17007507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Thioflavin T interaction with amyloid fibrils as an instrument for their studying].
    Sulatskaia AI; Kuznetsova IM
    Tsitologiia; 2010; 52(11):955-9. PubMed ID: 21268856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening optimized protein purification protocols by coupling small-scale expression and mini-size exclusion chromatography.
    Sala E; de Marco A
    Protein Expr Purif; 2010 Dec; 74(2):231-5. PubMed ID: 20685308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circular dichroism spectroscopy as a tool for monitoring aggregation in monoclonal antibody therapeutics.
    Joshi V; Shivach T; Yadav N; Rathore AS
    Anal Chem; 2014 Dec; 86(23):11606-13. PubMed ID: 25350583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Protein A and size exclusion high performance liquid chromatography for the single-step measurement of mAb, aggregates and host cell proteins.
    Gjoka X; Schofield M; Cvetkovic A; Gantier R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Dec; 972():48-52. PubMed ID: 25310707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of thioflavin T with amyloid fibrils: fluorescence quantum yield of bound dye.
    Sulatskaya AI; Kuznetsova IM; Turoverov KK
    J Phys Chem B; 2012 Mar; 116(8):2538-44. PubMed ID: 22268449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the mAb Aggregation Propensity Using Self-Interaction Chromatography as a Screening Tool.
    Hedberg SHM; Lee D; Mishra Y; Haigh JM; Williams DR
    Anal Chem; 2018 Mar; 90(6):3878-3885. PubMed ID: 29446917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of IgG aggregation by a high throughput method based on extrinsic fluorescence.
    He F; Phan DH; Hogan S; Bailey R; Becker GW; Narhi LO; Razinkov VI
    J Pharm Sci; 2010 Jun; 99(6):2598-608. PubMed ID: 20039384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear quantitation of Abeta aggregation using Thioflavin T: reduction in fibril formation by colostrinin.
    Bourhim M; Kruzel M; Srikrishnan T; Nicotera T
    J Neurosci Methods; 2007 Mar; 160(2):264-8. PubMed ID: 17049613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthogonal high-throughput thermal scanning method for rank ordering protein formulations.
    Nashine VC; Kroetsch AM; Sahin E; Zhou R; Adams ML
    AAPS PharmSciTech; 2013 Dec; 14(4):1360-6. PubMed ID: 24002823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thioflavin T as a molecular rotor: fluorescent properties of thioflavin T in solvents with different viscosity.
    Stsiapura VI; Maskevich AA; Kuzmitsky VA; Uversky VN; Kuznetsova IM; Turoverov KK
    J Phys Chem B; 2008 Dec; 112(49):15893-902. PubMed ID: 19367903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.