These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 21953828)
1. Comparison between two different methods of immobilizing NGF in poly(DL-lactic acid-co-glycolic acid) conduit for peripheral nerve regeneration by EDC/NHS/MES and genipin. Hsieh SC; Tang CM; Huang WT; Hsieh LL; Lu CM; Chang CJ; Hsu SH J Biomed Mater Res A; 2011 Dec; 99(4):576-85. PubMed ID: 21953828 [TBL] [Abstract][Full Text] [Related]
2. Effects of unidirectional permeability in asymmetric poly(DL-lactic acid-co-glycolic acid) conduits on peripheral nerve regeneration: an in vitro and in vivo study. Chang CJ; Hsu SH; Yen HJ; Chang H; Hsu SK J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):206-15. PubMed ID: 17405166 [TBL] [Abstract][Full Text] [Related]
3. Nerve conduits based on immobilization of nerve growth factor onto modified chitosan by using genipin as a crosslinking agent. Yang Y; Zhao W; He J; Zhao Y; Ding F; Gu X Eur J Pharm Biopharm; 2011 Nov; 79(3):519-25. PubMed ID: 21736941 [TBL] [Abstract][Full Text] [Related]
4. The effect of pulse-released nerve growth factor from genipin-crosslinked gelatin in schwann cell-seeded polycaprolactone conduits on large-gap peripheral nerve regeneration. Chang CJ Tissue Eng Part A; 2009 Mar; 15(3):547-57. PubMed ID: 18925830 [TBL] [Abstract][Full Text] [Related]
5. The effect of high outflow permeability in asymmetric poly(dl-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. Chang CJ; Hsu SH Biomaterials; 2006 Mar; 27(7):1035-42. PubMed ID: 16098582 [TBL] [Abstract][Full Text] [Related]
6. The effects of low-intensity ultrasound on peripheral nerve regeneration in poly(DL-lactic acid-co-glycolic acid) conduits seeded with Schwann cells. Chang CJ; Hsu SH Ultrasound Med Biol; 2004 Aug; 30(8):1079-84. PubMed ID: 15474752 [TBL] [Abstract][Full Text] [Related]
7. Effects of nerve growth factor from genipin-crosslinked gelatin in polycaprolactone conduit on peripheral nerve regeneration--in vitro and in vivo. Chang CJ J Biomed Mater Res A; 2009 Nov; 91(2):586-96. PubMed ID: 18985781 [TBL] [Abstract][Full Text] [Related]
9. PDLLA/chondroitin sulfate/chitosan/NGF conduits for peripheral nerve regeneration. Xu H; Yan Y; Li S Biomaterials; 2011 Jul; 32(20):4506-16. PubMed ID: 21397324 [TBL] [Abstract][Full Text] [Related]
10. [Experimental study on gradient of nerve growth factor immobilized conduits promoting peripheral nerve regeneration in rats]. Lin Q; Cai Y; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Feb; 28(2):167-72. PubMed ID: 24796187 [TBL] [Abstract][Full Text] [Related]
11. Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. Liu JJ; Wang CY; Wang JG; Ruan HJ; Fan CY J Biomed Mater Res A; 2011 Jan; 96(1):13-20. PubMed ID: 20949481 [TBL] [Abstract][Full Text] [Related]
12. A multi-walled silk fibroin/silk sericin nerve conduit coated with poly(lactic-co-glycolic acid) sheath for peripheral nerve regeneration. Rao J; Cheng Y; Liu Y; Ye Z; Zhan B; Quan D; Xu Y Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():319-332. PubMed ID: 28183615 [TBL] [Abstract][Full Text] [Related]
14. In vitro and in vivo effects of Ginkgo biloba extract EGb 761 on seeded Schwann cells within poly(DL-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. Hsu SH; Chang CJ; Tang CM; Lin FT J Biomater Appl; 2004 Oct; 19(2):163-82. PubMed ID: 15381788 [TBL] [Abstract][Full Text] [Related]
15. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Chen YS; Chang JY; Cheng CY; Tsai FJ; Yao CH; Liu BS Biomaterials; 2005 Jun; 26(18):3911-8. PubMed ID: 15626438 [TBL] [Abstract][Full Text] [Related]
16. Ciliary neurotrophic factor-coated polylactic-polyglycolic acid chitosan nerve conduit promotes peripheral nerve regeneration in canine tibial nerve defect repair. Shen H; Shen ZL; Zhang PH; Chen NL; Wang YC; Zhang ZF; Jin YQ J Biomed Mater Res B Appl Biomater; 2010 Oct; 95(1):161-70. PubMed ID: 20737557 [TBL] [Abstract][Full Text] [Related]
17. Slow-releasing rapamycin-coated bionic peripheral nerve scaffold promotes the regeneration of rat sciatic nerve after injury. Ding T; Zhu C; Yin JB; Zhang T; Lu YC; Ren J; Li YQ Life Sci; 2015 Feb; 122():92-9. PubMed ID: 25529147 [TBL] [Abstract][Full Text] [Related]
18. Highly permeable genipin-cross-linked gelatin conduits enhance peripheral nerve regeneration. Chang JY; Ho TY; Lee HC; Lai YL; Lu MC; Yao CH; Chen YS Artif Organs; 2009 Dec; 33(12):1075-85. PubMed ID: 19663865 [TBL] [Abstract][Full Text] [Related]
19. Low-intensity-ultrasound-accelerated nerve regeneration using cell-seeded poly(D,L-lactic acid-co-glycolic acid) conduits: an in vivo and in vitro study. Chang CJ; Hsu SH; Lin FT; Chang H; Chang CS J Biomed Mater Res B Appl Biomater; 2005 Oct; 75(1):99-107. PubMed ID: 16015644 [TBL] [Abstract][Full Text] [Related]
20. Short- and long-term peripheral nerve regeneration using a poly-lactic-co-glycolic-acid scaffold containing nerve growth factor and glial cell line-derived neurotrophic factor releasing microspheres. de Boer R; Borntraeger A; Knight AM; Hébert-Blouin MN; Spinner RJ; Malessy MJ; Yaszemski MJ; Windebank AJ J Biomed Mater Res A; 2012 Aug; 100(8):2139-46. PubMed ID: 22615148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]