These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21954289)

  • 21. The yeast MAPK Hog1 is not essential for immediate survival under osmostress.
    Maayan I; Engelberg D
    FEBS Lett; 2009 Jun; 583(12):2015-20. PubMed ID: 19447106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The coordinate actions of calcineurin and Hog1 mediate the stress response through multiple nodes of the cell cycle network.
    Leech CM; Flynn MJ; Arsenault HE; Ou J; Liu H; Zhu LJ; Benanti JA
    PLoS Genet; 2020 Apr; 16(4):e1008600. PubMed ID: 32343701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae.
    Bellí G; Garí E; Aldea M; Herrero E
    Mol Microbiol; 2001 Feb; 39(4):1022-35. PubMed ID: 11251821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes.
    De Nadal E; Zapater M; Alepuz PM; Sumoy L; Mas G; Posas F
    Nature; 2004 Jan; 427(6972):370-4. PubMed ID: 14737171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular systems biology of Sic1 in yeast cell cycle regulation through multiscale modeling.
    Barberis M
    Adv Exp Med Biol; 2012; 736():135-67. PubMed ID: 22161326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CDK Pho85 targets CDK inhibitor Sic1 to relieve yeast G1 checkpoint arrest after DNA damage.
    Wysocki R; Javaheri A; Kristjansdottir K; Sha F; Kron SJ
    Nat Struct Mol Biol; 2006 Oct; 13(10):908-14. PubMed ID: 16964260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity.
    Clotet J; Escoté X; Adrover MA; Yaakov G; Garí E; Aldea M; de Nadal E; Posas F
    EMBO J; 2006 Jun; 25(11):2338-46. PubMed ID: 16688223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase.
    de Nadal E; Casadomé L; Posas F
    Mol Cell Biol; 2003 Jan; 23(1):229-37. PubMed ID: 12482976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Yeast IME2 functions early in meiosis upstream of cell cycle-regulated SBF and MBF targets.
    Brush GS; Najor NA; Dombkowski AA; Cukovic D; Sawarynski KE
    PLoS One; 2012; 7(2):e31575. PubMed ID: 22393365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclin-specific START events and the G1-phase specificity of arrest by mating factor in budding yeast.
    Oehlen LJ; Jeoung DI; Cross FR
    Mol Gen Genet; 1998 May; 258(3):183-98. PubMed ID: 9645424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation.
    Babazadeh R; Furukawa T; Hohmann S; Furukawa K
    Sci Rep; 2014 Apr; 4():4697. PubMed ID: 24732094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Sch9 kinase is a chromatin-associated transcriptional activator of osmostress-responsive genes.
    Pascual-Ahuir A; Proft M
    EMBO J; 2007 Jul; 26(13):3098-108. PubMed ID: 17568771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of Cdc28 CDK1 by a stress-induced lncRNA.
    Nadal-Ribelles M; Solé C; Xu Z; Steinmetz LM; de Nadal E; Posas F
    Mol Cell; 2014 Feb; 53(4):549-61. PubMed ID: 24508389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphorylation of sic1, a cyclin-dependent kinase (Cdk) inhibitor, by Cdk including Pho85 kinase is required for its prompt degradation.
    Nishizawa M; Kawasumi M; Fujino M; Toh-e A
    Mol Biol Cell; 1998 Sep; 9(9):2393-405. PubMed ID: 9725902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A systems biology analysis of long and short-term memories of osmotic stress adaptation in fungi.
    You T; Ingram P; Jacobsen MD; Cook E; McDonagh A; Thorne T; Lenardon MD; de Moura AP; Romano MC; Thiel M; Stumpf M; Gow NA; Haynes K; Grebogi C; Stark J; Brown AJ
    BMC Res Notes; 2012 May; 5():258. PubMed ID: 22631601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of MAP kinase Hog1 by calmodulin during hyperosmotic stress.
    Kim J; Oh J; Sung GH
    Biochim Biophys Acta; 2016 Nov; 1863(11):2551-2559. PubMed ID: 27421986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective requirement for SAGA in Hog1-mediated gene expression depending on the severity of the external osmostress conditions.
    Zapater M; Sohrmann M; Peter M; Posas F; de Nadal E
    Mol Cell Biol; 2007 Jun; 27(11):3900-10. PubMed ID: 17403898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recovery of the yeast cell cycle from heat shock-induced G(1) arrest involves a positive regulation of G(1) cyclin expression by the S phase cyclin Clb5.
    Li X; Cai M
    J Biol Chem; 1999 Aug; 274(34):24220-31. PubMed ID: 10446197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hog1 activation delays mitotic exit via phosphorylation of Net1.
    Tognetti S; Jiménez J; Viganò M; Duch A; Queralt E; de Nadal E; Posas F
    Proc Natl Acad Sci U S A; 2020 Apr; 117(16):8924-8933. PubMed ID: 32265285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delayed Turnover of Unphosphorylated Ssk1 during Carbon Stress Activates the Yeast Hog1 Map Kinase Pathway.
    Vallejo MC; Mayinger P
    PLoS One; 2015; 10(9):e0137199. PubMed ID: 26340004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.