These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21954386)

  • 1. Functional hemispheric specialization in processing phonemic and prosodic auditory changes in neonates.
    Arimitsu T; Uchida-Ota M; Yagihashi T; Kojima S; Watanabe S; Hokuto I; Ikeda K; Takahashi T; Minagawa-Kawai Y
    Front Psychol; 2011; 2():202. PubMed ID: 21954386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional lateralization of speech processing in adults and children who stutter.
    Sato Y; Mori K; Koizumi T; Minagawa-Kawai Y; Tanaka A; Ozawa E; Wakaba Y; Mazuka R
    Front Psychol; 2011; 2():70. PubMed ID: 21687442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cerebral lateralization in spoken language processing measured by multi-channel near-infrared spectroscopy (NIRS)].
    Furuya I; Mori K
    No To Shinkei; 2003 Mar; 55(3):226-31. PubMed ID: 12728503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Functional Neuroanatomy of Lexical Tone Perception: An Activation Likelihood Estimation Meta-Analysis.
    Liang B; Du Y
    Front Neurosci; 2018; 12():495. PubMed ID: 30087589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cerebral hemodynamic response to phonetic changes of speech in preterm and term infants: The impact of postmenstrual age.
    Arimitsu T; Minagawa Y; Yagihashi T; O Uchida M; Matsuzaki A; Ikeda K; Takahashi T
    Neuroimage Clin; 2018; 19():599-606. PubMed ID: 29984167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral laterality for phonemic and prosodic cue decoding in children with autism.
    Minagawa-Kawai Y; Naoi N; Kikuchi N; Yamamoto J; Nakamura K; Kojima S
    Neuroreport; 2009 Aug; 20(13):1219-24. PubMed ID: 19617855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural correlates of the perception of contrastive prosodic focus in French: a functional magnetic resonance imaging study.
    Perrone-Bertolotti M; Dohen M; Lœvenbruck H; Sato M; Pichat C; Baciu M
    Hum Brain Mapp; 2013 Oct; 34(10):2574-91. PubMed ID: 22488985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemispheric lateralization of linguistic prosody recognition in comparison to speech and speaker recognition.
    Kreitewolf J; Friederici AD; von Kriegstein K
    Neuroimage; 2014 Nov; 102 Pt 2():332-44. PubMed ID: 25087482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prosody meets syntax: the role of the corpus callosum.
    Sammler D; Kotz SA; Eckstein K; Ott DV; Friederici AD
    Brain; 2010 Sep; 133(9):2643-55. PubMed ID: 20802205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Newborns discriminate utterance-level prosodic contours.
    Martinez-Alvarez A; Benavides-Varela S; Lapillonne A; Gervain J
    Dev Sci; 2023 Mar; 26(2):e13304. PubMed ID: 35841609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemispheric roles in the perception of speech prosody.
    Gandour J; Tong Y; Wong D; Talavage T; Dzemidzic M; Xu Y; Li X; Lowe M
    Neuroimage; 2004 Sep; 23(1):344-57. PubMed ID: 15325382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonological manipulation between speech perception and production activates a parieto-frontal circuit.
    Peschke C; Ziegler W; Eisenberger J; Baumgaertner A
    Neuroimage; 2012 Jan; 59(1):788-99. PubMed ID: 21787870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing signal-driven mechanisms in neonates: brain responses to temporally and spectrally different sounds.
    Minagawa-Kawai Y; Cristià A; Vendelin I; Cabrol D; Dupoux E
    Front Psychol; 2011; 2():135. PubMed ID: 21720538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonemes, words, and phrases: Tracking phonological processing in pre-schoolers developing dyslexia.
    Schaadt G; Männel C
    Clin Neurophysiol; 2019 Aug; 130(8):1329-1341. PubMed ID: 31200240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-infrared spectroscopy reveals neural perception of vocal emotions in human neonates.
    Zhang D; Chen Y; Hou X; Wu YJ
    Hum Brain Mapp; 2019 Jun; 40(8):2434-2448. PubMed ID: 30697881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The processing of prosody: Evidence of interhemispheric specialization at the age of four.
    Wartenburger I; Steinbrink J; Telkemeyer S; Friedrich M; Friederici AD; Obrig H
    Neuroimage; 2007 Jan; 34(1):416-25. PubMed ID: 17056277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing cerebral representations of short and long vowel categories by NIRS.
    Minagawa-Kawai Y; Mori K; Furuya I; Hayashi R; Sato Y
    Neuroreport; 2002 Apr; 13(5):581-4. PubMed ID: 11973450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing prosodic boundaries in natural and hummed speech: an FMRI study.
    Ischebeck AK; Friederici AD; Alter K
    Cereb Cortex; 2008 Mar; 18(3):541-52. PubMed ID: 17591598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of prosodic and segmental change in speech-modulated bone-conducted ultrasound by mismatch fields.
    Okayasu T; Nishimura T; Nakagawa S; Yamashita A; Nagatani Y; Uratani Y; Yamanaka T; Hosoi H
    Neurosci Lett; 2014 Jan; 559():117-21. PubMed ID: 24316405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateralization of emotional prosody in the brain: an overview and synopsis on the impact of study design.
    Kotz SA; Meyer M; Paulmann S
    Prog Brain Res; 2006; 156():285-94. PubMed ID: 17015086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.