BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 21954972)

  • 1. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications.
    Murphy MP
    Antioxid Redox Signal; 2012 Mar; 16(6):476-95. PubMed ID: 21954972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial thiols in the regulation of cell death pathways.
    Yin F; Sancheti H; Cadenas E
    Antioxid Redox Signal; 2012 Dec; 17(12):1714-27. PubMed ID: 22530585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathionylation of mitochondrial proteins.
    Hurd TR; Costa NJ; Dahm CC; Beer SM; Brown SE; Filipovska A; Murphy MP
    Antioxid Redox Signal; 2005; 7(7-8):999-1010. PubMed ID: 15998254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring mitochondrial protein thiol redox state.
    Requejo R; Chouchani ET; Hurd TR; Menger KE; Hampton MB; Murphy MP
    Methods Enzymol; 2010; 474():123-47. PubMed ID: 20609908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Thiol Redox Signaling in Monocytes and Macrophages.
    Short JD; Downs K; Tavakoli S; Asmis R
    Antioxid Redox Signal; 2016 Nov; 25(15):816-835. PubMed ID: 27288099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
    Mailloux RJ; Treberg JR
    Redox Biol; 2016 Aug; 8():110-8. PubMed ID: 26773874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in mitochondrial glutathione levels and protein thiol oxidation in ∆yfh1 yeast cells and the lymphoblasts of patients with Friedreich's ataxia.
    Bulteau AL; Planamente S; Jornea L; Dur A; Lesuisse E; Camadro JM; Auchère F
    Biochim Biophys Acta; 2012 Feb; 1822(2):212-25. PubMed ID: 22200491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System.
    Ren X; Zou L; Zhang X; Branco V; Wang J; Carvalho C; Holmgren A; Lu J
    Antioxid Redox Signal; 2017 Nov; 27(13):989-1010. PubMed ID: 28443683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage.
    Requejo R; Hurd TR; Costa NJ; Murphy MP
    FEBS J; 2010 Mar; 277(6):1465-80. PubMed ID: 20148960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Disruption of Mitochondrial Thiol Redox State in Cells and In Vivo.
    Booty LM; Gawel JM; Cvetko F; Caldwell ST; Hall AR; Mulvey JF; James AM; Hinchy EC; Prime TA; Arndt S; Beninca C; Bright TP; Clatworthy MR; Ferdinand JR; Prag HA; Logan A; Prudent J; Krieg T; Hartley RC; Murphy MP
    Cell Chem Biol; 2019 Mar; 26(3):449-461.e8. PubMed ID: 30713096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiol-redox signaling, dopaminergic cell death, and Parkinson's disease.
    Garcia-Garcia A; Zavala-Flores L; Rodriguez-Rocha H; Franco R
    Antioxid Redox Signal; 2012 Dec; 17(12):1764-84. PubMed ID: 22369136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disulphide formation on mitochondrial protein thiols.
    Hurd TR; Filipovska A; Costa NJ; Dahm CC; Murphy MP
    Biochem Soc Trans; 2005 Dec; 33(Pt 6):1390-3. PubMed ID: 16246126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The emerging roles of protein glutathionylation in chloroplasts.
    Zaffagnini M; Bedhomme M; Lemaire SD; Trost P
    Plant Sci; 2012 Apr; 185-186():86-96. PubMed ID: 22325869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses.
    Adimora NJ; Jones DP; Kemp ML
    Antioxid Redox Signal; 2010 Sep; 13(6):731-43. PubMed ID: 20121341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-temporal changes in glutathione and thioredoxin redox couples during ionizing radiation-induced oxidative stress regulate tumor radio-resistance.
    Patwardhan RS; Sharma D; Checker R; Thoh M; Sandur SK
    Free Radic Res; 2015 Oct; 49(10):1218-32. PubMed ID: 26021764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol chemistry in peroxidase catalysis and redox signaling.
    Bindoli A; Fukuto JM; Forman HJ
    Antioxid Redox Signal; 2008 Sep; 10(9):1549-64. PubMed ID: 18479206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox Regulation
    Matsui R; Ferran B; Oh A; Croteau D; Shao D; Han J; Pimentel DR; Bachschmid MM
    Antioxid Redox Signal; 2020 Apr; 32(10):677-700. PubMed ID: 31813265
    [No Abstract]   [Full Text] [Related]  

  • 20. Thiol-based antioxidants.
    Deneke SM
    Curr Top Cell Regul; 2000; 36():151-80. PubMed ID: 10842751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.