These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 21955117)
1. Synthesis and structural verification of the xylomannan antifreeze substance from the freeze-tolerant Alaskan beetle Upis ceramboides. Crich D; Rahaman MY J Org Chem; 2011 Nov; 76(21):8611-20. PubMed ID: 21955117 [TBL] [Abstract][Full Text] [Related]
2. A nonprotein thermal hysteresis-producing xylomannan antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides. Walters KR; Serianni AS; Sformo T; Barnes BM; Duman JG Proc Natl Acad Sci U S A; 2009 Dec; 106(48):20210-5. PubMed ID: 19934038 [TBL] [Abstract][Full Text] [Related]
3. Synthetic study and structural analysis of the antifreeze agent xylomannan from Upis ceramboides. Ishiwata A; Sakurai A; Nishimiya Y; Tsuda S; Ito Y J Am Chem Soc; 2011 Dec; 133(48):19524-35. PubMed ID: 22029271 [TBL] [Abstract][Full Text] [Related]
4. A thermal hysteresis-producing xylomannan glycolipid antifreeze associated with cold tolerance is found in diverse taxa. Walters KR; Serianni AS; Voituron Y; Sformo T; Barnes BM; Duman JG J Comp Physiol B; 2011 Jul; 181(5):631-40. PubMed ID: 21279720 [TBL] [Abstract][Full Text] [Related]
5. Expeditious chemical synthesis of xylomannans disproves the proposed antifreeze activities. Zhu Q; Nicolardi S; Wang Y; Liu Y; Xu P; Wang J; Zhu D; Yu B Natl Sci Rev; 2024 Oct; 11(10):nwae296. PubMed ID: 39315280 [TBL] [Abstract][Full Text] [Related]
6. Cryoprotectant biosynthesis and the selective accumulation of threitol in the freeze-tolerant Alaskan beetle, Upis ceramboides. Walters KR; Pan Q; Serianni AS; Duman JG J Biol Chem; 2009 Jun; 284(25):16822-16831. PubMed ID: 19403530 [TBL] [Abstract][Full Text] [Related]
7. Hofmeister effects of common monovalent salts on the beetle antifreeze protein activity. Wang S; Amornwittawat N; Banatlao J; Chung M; Kao Y; Wen X J Phys Chem B; 2009 Oct; 113(42):13891-4. PubMed ID: 19778062 [TBL] [Abstract][Full Text] [Related]
9. Interaction of reduced nicotinamide adenine dinucleotide with an antifreeze protein from Dendroides canadensis: mechanistic implication of antifreeze activity enhancement. Wen X; Wang S; Amornwittawat N; Houghton EA; Sacco MA J Mol Recognit; 2011; 24(6):1025-32. PubMed ID: 22038809 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of oligosaccharides related to galactomannans from Aspergillus fumigatus and their NMR spectral data. Krylov VB; Argunov DA; Solovev AS; Petruk MI; Gerbst AG; Dmitrenok AS; Shashkov AS; Latgé JP; Nifantiev NE Org Biomol Chem; 2018 Feb; 16(7):1188-1199. PubMed ID: 29376539 [TBL] [Abstract][Full Text] [Related]
11. Structural determination of D-mannans of pathogenic yeasts Candida stellatoidea type I strains: TIMM 0310 and ATCC 11006 compared to IFO 1397. Kobayashi H; Kojimahara T; Takahashi K; Takikawa M; Takahashi S; Shibata N; Okawa Y; Suzuki S Carbohydr Res; 1991 Jul; 214(1):131-45. PubMed ID: 1954627 [TBL] [Abstract][Full Text] [Related]
12. Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes (Fabricius): roles of antifreeze proteins, polyols, dehydration and diapause. Bennett VA; Sformo T; Walters K; Tøien Ø; Jeannet K; Hochstrasser R; Pan Q; Serianni AS; Barnes BM; Duman JG J Exp Biol; 2005 Dec; 208(Pt 23):4467-77. PubMed ID: 16339867 [TBL] [Abstract][Full Text] [Related]
13. Structural study of a cell wall mannan-protein complex of the pathogenic yeast Candida glabrata IFO 0622 strain. Kobayashi H; Mitobe H; Takahashi K; Yamamoto T; Shibata N; Suzuki S Arch Biochem Biophys; 1992 May; 294(2):662-9. PubMed ID: 1567221 [TBL] [Abstract][Full Text] [Related]
14. Conformational analysis of two xylose-containing N-glycans in aqueous solution by using 1H NMR ROESY and NOESY spectroscopy in combination with MD simulations. Lommerse JP; van Rooijen JJ; Kroon-Batenburg LM; Kamerling JP; Vliegenthart JF Carbohydr Res; 2002 Nov; 337(21-23):2279-99. PubMed ID: 12433493 [TBL] [Abstract][Full Text] [Related]
15. Arginine, a key residue for the enhancing ability of an antifreeze protein of the beetle Dendroides canadensis. Wang S; Amornwittawat N; Juwita V; Kao Y; Duman JG; Pascal TA; Goddard WA; Wen X Biochemistry; 2009 Oct; 48(40):9696-703. PubMed ID: 19746966 [TBL] [Abstract][Full Text] [Related]
16. 1H-NMR spectroscopy of manno-oligosaccharides of the beta-1,2-linked series released from the phosphopeptidomannan of Candida albicans VW-32 (serotype A). Faille C; Wieruszeski JM; Lepage G; Michalski JC; Poulain D; Strecker G Biochem Biophys Res Commun; 1991 Dec; 181(3):1251-8. PubMed ID: 1764074 [TBL] [Abstract][Full Text] [Related]
17. Antifreeze activity enhancement by site directed mutagenesis on an antifreeze protein from the beetle Rhagium mordax. Friis DS; Kristiansen E; von Solms N; Ramløv H FEBS Lett; 2014 May; 588(9):1767-72. PubMed ID: 24681101 [TBL] [Abstract][Full Text] [Related]
18. Antifreeze Activity of Xylomannan from the Mycelium and Fruit Body of Flammulina velutipes. Kawahara H; Matsuda Y; Sakaguchi T; Arai N; Koide Y Biocontrol Sci; 2016; 21(3):153-9. PubMed ID: 27667520 [TBL] [Abstract][Full Text] [Related]
19. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. Duman JG J Exp Biol; 2015 Jun; 218(Pt 12):1846-55. PubMed ID: 26085662 [TBL] [Abstract][Full Text] [Related]
20. Structural study of cell wall mannan of a Candida albicans (serotype A) strain. Kobayashi H; Shibata N; Osaka T; Miyagawa Y; Ohkubo Y; Suzuki S Phytochemistry; 1992 Apr; 31(4):1147-53. PubMed ID: 1368047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]