These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 21955125)
1. Size control in the synthesis of 1-6 nm gold nanoparticles via solvent-controlled nucleation. Song J; Kim D; Lee D Langmuir; 2011 Nov; 27(22):13854-60. PubMed ID: 21955125 [TBL] [Abstract][Full Text] [Related]
2. Facile syntheses of monodisperse ultrasmall Au clusters. Bertino MF; Sun ZM; Zhang R; Wang LS J Phys Chem B; 2006 Nov; 110(43):21416-8. PubMed ID: 17064088 [TBL] [Abstract][Full Text] [Related]
3. Rapid synthesis of highly monodisperse Au(x)Ag(1-x) alloy nanoparticles via a half-seeding approach. Chng TT; Polavarapu L; Xu QH; Ji W; Zeng HC Langmuir; 2011 May; 27(9):5633-43. PubMed ID: 21462957 [TBL] [Abstract][Full Text] [Related]
4. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Bastús NG; Comenge J; Puntes V Langmuir; 2011 Sep; 27(17):11098-105. PubMed ID: 21728302 [TBL] [Abstract][Full Text] [Related]
5. Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. Wu Z; MacDonald MA; Chen J; Zhang P; Jin R J Am Chem Soc; 2011 Jun; 133(25):9670-3. PubMed ID: 21634375 [TBL] [Abstract][Full Text] [Related]
6. Biphasic synthesis of Au@SiO2 core-shell particles with stepwise ligand exchange. Schulzendorf M; Cavelius C; Born P; Murray E; Kraus T Langmuir; 2011 Jan; 27(2):727-32. PubMed ID: 21142211 [TBL] [Abstract][Full Text] [Related]
7. Direct synthesis of large water-soluble functionalized gold nanoparticles using Bunte salts as ligand precursors. Lohse SE; Dahl JA; Hutchison JE Langmuir; 2010 May; 26(10):7504-11. PubMed ID: 20180591 [TBL] [Abstract][Full Text] [Related]
8. Simple reductant concentration-dependent shape control of polyhedral gold nanoparticles and their plasmonic properties. Eguchi M; Mitsui D; Wu HL; Sato R; Teranishi T Langmuir; 2012 Jun; 28(24):9021-6. PubMed ID: 22404172 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size. Sardar R; Shumaker-Parry JS J Am Chem Soc; 2011 Jun; 133(21):8179-90. PubMed ID: 21548572 [TBL] [Abstract][Full Text] [Related]
10. New preparation method of gold nanoparticles on SiO2. Zanella R; Sandoval A; Santiago P; Basiuk VA; Saniger JM J Phys Chem B; 2006 May; 110(17):8559-65. PubMed ID: 16640406 [TBL] [Abstract][Full Text] [Related]
11. Spacer-mediated synthesis of size-controlled gold nanoparticles using geminis as ligands. Liu Q; Guo M; Nie Z; Yuan J; Tan J; Yao S Langmuir; 2008 Mar; 24(5):1595-9. PubMed ID: 18237211 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and surface structure of thymine-functionalized, self-assembled monolayer-protected gold nanoparticles. Zhou J; Beattie DA; Sedev R; Ralston J Langmuir; 2007 Aug; 23(18):9170-7. PubMed ID: 17683147 [TBL] [Abstract][Full Text] [Related]
13. Low-temperature metallic alloying of copper and silver nanoparticles with gold nanoparticles through digestive ripening. Smetana AB; Klabunde KJ; Sorensen CM; Ponce AA; Mwale B J Phys Chem B; 2006 Feb; 110(5):2155-8. PubMed ID: 16471798 [TBL] [Abstract][Full Text] [Related]
14. Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water. Wang Z; Tan B; Hussain I; Schaeffer N; Wyatt MF; Brust M; Cooper AI Langmuir; 2007 Jan; 23(2):885-95. PubMed ID: 17209648 [TBL] [Abstract][Full Text] [Related]
15. Rational synthesis of heterostructured nanoparticles with morphology control. Wang C; Tian W; Ding Y; Ma YQ; Wang ZL; Markovic NM; Stamenkovic VR; Daimon H; Sun S J Am Chem Soc; 2010 May; 132(18):6524-9. PubMed ID: 20397665 [TBL] [Abstract][Full Text] [Related]
16. Tunable solvation effects on the size-selective fractionation of metal nanoparticles in CO2 gas-expanded solvents. Anand M; McLeod MC; Bell PW; Roberts CB J Phys Chem B; 2005 Dec; 109(48):22852-9. PubMed ID: 16853977 [TBL] [Abstract][Full Text] [Related]
17. Controllable synthesis of gold nanoparticles with ultrasmall size and high monodispersity via continuous supplement of precursor. Li Y; Liu S; Yao T; Sun Z; Jiang Z; Huang Y; Cheng H; Huang Y; Jiang Y; Xie Z; Pan G; Yan W; Wei S Dalton Trans; 2012 Oct; 41(38):11725-30. PubMed ID: 22903561 [TBL] [Abstract][Full Text] [Related]
18. Effect of concentration of methanol for the control of particle size and size-dependent SERS studies. Praharaj S; Jana S; Kundu S; Pande S; Pal T J Colloid Interface Sci; 2009 May; 333(2):699-706. PubMed ID: 19232637 [TBL] [Abstract][Full Text] [Related]
19. Precipitation polymerization in acetic acid: synthesis of monodisperse cross-linked poly(divinylbenzene) microspheres. Yan Q; Bai Y; Meng Z; Yang W J Phys Chem B; 2008 Jun; 112(23):6914-22. PubMed ID: 18489142 [TBL] [Abstract][Full Text] [Related]
20. Combinatorial approach to the study of particle size effects in electrocatalysis: synthesis of supported gold nanoparticles. Guerin S; Hayden BE; Pletcher D; Rendall ME; Suchsland JP; Williams LJ J Comb Chem; 2006; 8(5):791-8. PubMed ID: 16961416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]