These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21955125)

  • 21. Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1-4 nm range using polymeric stabilizers.
    Hussain I; Graham S; Wang Z; Tan B; Sherrington DC; Rannard SP; Cooper AI; Brust M
    J Am Chem Soc; 2005 Nov; 127(47):16398-9. PubMed ID: 16305218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile synthesis of gold icosahedra in an aqueous solution by reacting HAuCl(4) with N-vinyl pyrrolidone.
    Yavuz MS; Li W; Xia Y
    Chemistry; 2009 Dec; 15(47):13181-7. PubMed ID: 19876970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-phase synthesis of water-soluble gold nanoparticles with control over size and surface functionalities.
    Oh E; Susumu K; Goswami R; Mattoussi H
    Langmuir; 2010 May; 26(10):7604-13. PubMed ID: 20121172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One-pot, high-yield synthesis of size-controlled gold particles with narrow size distribution.
    Guo S; Wang E
    Inorg Chem; 2007 Aug; 46(16):6740-3. PubMed ID: 17628059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation dynamics of gold nanoparticles in poly(vinylpyrrolidone) and other protective agent solutions.
    Nakazato Y; Taniguchi K; Ono S; Eitoku T; Katayama K
    Phys Chem Chem Phys; 2009 Nov; 11(43):10064-72. PubMed ID: 19865761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver(I)-assisted citrate reduction.
    Xia H; Bai S; Hartmann J; Wang D
    Langmuir; 2010 Mar; 26(5):3585-9. PubMed ID: 19877698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monolayer-protected gold nanoparticles prepared using long-chain alkanethioacetates.
    Zhang S; Leem G; Lee TR
    Langmuir; 2009 Dec; 25(24):13855-60. PubMed ID: 19637885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine.
    Yamamoto M; Kashiwagi Y; Nakamoto M
    Langmuir; 2006 Sep; 22(20):8581-6. PubMed ID: 16981779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reaction mechanism governing formation of 1,3-bis(diphenylphosphino)propane-protected gold nanoclusters.
    Hudgens JW; Pettibone JM; Senftle TP; Bratton RN
    Inorg Chem; 2011 Oct; 50(20):10178-89. PubMed ID: 21928777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An in situ quick XAFS spectroscopy study on the formation mechanism of small gold nanoparticles supported by porphyrin-cored tetradentate passivants.
    Ohyama J; Teramura K; Higuchi Y; Shishido T; Hitomi Y; Aoki K; Funabiki T; Kodera M; Kato K; Tanida H; Uruga T; Tanaka T
    Phys Chem Chem Phys; 2011 Jun; 13(23):11128-35. PubMed ID: 21566846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation.
    Zhang Q; Xie J; Yang J; Lee JY
    ACS Nano; 2009 Jan; 3(1):139-48. PubMed ID: 19206260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile preparation of organic nanoparticles by interfacial cross-linking of reverse micelles and template synthesis of subnanometer Au-Pt nanoparticles.
    Zhang S; Zhao Y
    ACS Nano; 2011 Apr; 5(4):2637-46. PubMed ID: 21366348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facile synthesis of silver core - silica shell composite nanoparticles.
    Niitsoo O; Couzis A
    J Colloid Interface Sci; 2011 Feb; 354(2):887-90. PubMed ID: 21145562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling the pulsed-laser-induced size reduction of Au and Ag nanoparticles via changes in the external pressure, laser intensity, and excitation wavelength.
    Werner D; Hashimoto S
    Langmuir; 2013 Jan; 29(4):1295-302. PubMed ID: 23259708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of highly faceted pentagonal- and hexagonal-shaped gold nanoparticles with controlled sizes by sodium dodecyl sulfate.
    Kuo CH; Chiang TF; Chen LJ; Huang MH
    Langmuir; 2004 Aug; 20(18):7820-4. PubMed ID: 15323536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aggregative growth in the size-controlled growth of monodispersed gold nanoparticles.
    Njoki PN; Luo J; Kamundi MM; Lim S; Zhong CJ
    Langmuir; 2010 Aug; 26(16):13622-9. PubMed ID: 20695612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size controlled synthesis of sub-100 nm monodisperse poly(methylmethacrylate) nanoparticles using surfactant-free emulsion polymerization.
    Camli ST; Buyukserin F; Balci O; Budak GG
    J Colloid Interface Sci; 2010 Apr; 344(2):528-32. PubMed ID: 20138293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles.
    Frenkel AI; Nemzer S; Pister I; Soussan L; Harris T; Sun Y; Rafailovich MH
    J Chem Phys; 2005 Nov; 123(18):184701. PubMed ID: 16292915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into initial kinetic nucleation of gold nanocrystals.
    Yao T; Sun Z; Li Y; Pan Z; Wei H; Xie Y; Nomura M; Niwa Y; Yan W; Wu Z; Jiang Y; Liu Q; Wei S
    J Am Chem Soc; 2010 Jun; 132(22):7696-701. PubMed ID: 20469856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile controlled preparation of phosphonic acid-functionalized gold nanoparticles.
    Zhang F; Zhou Y; Chen Y; Shi Z; Tang Y; Lu T
    J Colloid Interface Sci; 2010 Nov; 351(2):421-6. PubMed ID: 20797722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.