These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 21955326)
1. Transcriptional responses of Burkholderia cenocepacia to polymyxin B in isogenic strains with diverse polymyxin B resistance phenotypes. Loutet SA; Di Lorenzo F; Clarke C; Molinaro A; Valvano MA BMC Genomics; 2011 Sep; 12():472. PubMed ID: 21955326 [TBL] [Abstract][Full Text] [Related]
2. Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia(†). Hamad MA; Di Lorenzo F; Molinaro A; Valvano MA Mol Microbiol; 2012 Sep; 85(5):962-74. PubMed ID: 22742453 [TBL] [Abstract][Full Text] [Related]
3. A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to antimicrobial peptides and bacterial survival in vivo. Loutet SA; Flannagan RS; Kooi C; Sokol PA; Valvano MA J Bacteriol; 2006 Mar; 188(6):2073-80. PubMed ID: 16513737 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesis and structure of the Burkholderia cenocepacia K56-2 lipopolysaccharide core oligosaccharide: truncation of the core oligosaccharide leads to increased binding and sensitivity to polymyxin B. Ortega X; Silipo A; Saldías MS; Bates CC; Molinaro A; Valvano MA J Biol Chem; 2009 Aug; 284(32):21738-51. PubMed ID: 19525227 [TBL] [Abstract][Full Text] [Related]
5. The suhB gene of Burkholderia cenocepacia is required for protein secretion, biofilm formation, motility and polymyxin B resistance. Rosales-Reyes R; Saldías MS; Aubert DF; El-Halfawy OM; Valvano MA Microbiology (Reading); 2012 Sep; 158(Pt 9):2315-2324. PubMed ID: 22767545 [TBL] [Abstract][Full Text] [Related]
6. Deciphering the role of RND efflux transporters in Burkholderia cenocepacia. Bazzini S; Udine C; Sass A; Pasca MR; Longo F; Emiliani G; Fondi M; Perrin E; Decorosi F; Viti C; Giovannetti L; Leoni L; Fani R; Riccardi G; Mahenthiralingam E; Buroni S PLoS One; 2011 Apr; 6(4):e18902. PubMed ID: 21526150 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous and evolutionary changes in the antibiotic resistance of Burkholderia cenocepacia observed by global gene expression analysis. Sass A; Marchbank A; Tullis E; Lipuma JJ; Mahenthiralingam E BMC Genomics; 2011 Jul; 12():373. PubMed ID: 21781329 [TBL] [Abstract][Full Text] [Related]
8. Putrescine reduces antibiotic-induced oxidative stress as a mechanism of modulation of antibiotic resistance in Burkholderia cenocepacia. El-Halfawy OM; Valvano MA Antimicrob Agents Chemother; 2014 Jul; 58(7):4162-71. PubMed ID: 24820075 [TBL] [Abstract][Full Text] [Related]
9. Chemical communication of antibiotic resistance by a highly resistant subpopulation of bacterial cells. El-Halfawy OM; Valvano MA PLoS One; 2013; 8(7):e68874. PubMed ID: 23844246 [TBL] [Abstract][Full Text] [Related]
10. A c-di-GMP-Modulating Protein Regulates Swimming Motility of Kumar B; Sorensen JL; Cardona ST Front Cell Infect Microbiol; 2018; 8():56. PubMed ID: 29541628 [No Abstract] [Full Text] [Related]
12. A two-tier model of polymyxin B resistance in Burkholderia cenocepacia. Loutet SA; Mussen LE; Flannagan RS; Valvano MA Environ Microbiol Rep; 2011 Apr; 3(2):278-85. PubMed ID: 23761261 [TBL] [Abstract][Full Text] [Related]
13. DNA Methylation Epigenetically Regulates Gene Expression in Burkholderia cenocepacia and Controls Biofilm Formation, Cell Aggregation, and Motility. Vandenbussche I; Sass A; Pinto-Carbó M; Mannweiler O; Eberl L; Coenye T mSphere; 2020 Jul; 5(4):. PubMed ID: 32669472 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of the Burkholderia cenocepacia K56-2 essential genome reveals cell envelope functions that are uniquely required for survival in species of the genus Burkholderia. Gislason AS; Turner K; Domaratzki M; Cardona ST Microb Genom; 2017 Nov; 3(11):. PubMed ID: 29208119 [TBL] [Abstract][Full Text] [Related]
15. Insights into the genome diversity and virulence of two clinical isolates of Burkholderia cenocepacia. Salloum T; Nassour E; Araj GF; Abboud E; Tokajian S J Med Microbiol; 2018 Aug; 67(8):1157-1167. PubMed ID: 29897328 [TBL] [Abstract][Full Text] [Related]
16. Hopanoid production is required for low-pH tolerance, antimicrobial resistance, and motility in Burkholderia cenocepacia. Schmerk CL; Bernards MA; Valvano MA J Bacteriol; 2011 Dec; 193(23):6712-23. PubMed ID: 21965564 [TBL] [Abstract][Full Text] [Related]
17. Synthetic Cystic Fibrosis Sputum Medium Regulates Flagellar Biosynthesis through the flhF Gene in Burkholderia cenocepacia. Kumar B; Cardona ST Front Cell Infect Microbiol; 2016; 6():65. PubMed ID: 27379216 [TBL] [Abstract][Full Text] [Related]
18. Role of Burkholderia cenocepacia afcE and afcF genes in determining lipid-metabolism-associated phenotypes. Subramoni S; Agnoli K; Eberl L; Lewenza S; Sokol PA Microbiology (Reading); 2013 Mar; 159(Pt 3):603-614. PubMed ID: 23306671 [TBL] [Abstract][Full Text] [Related]
19. Identification of hopanoid biosynthesis genes involved in polymyxin resistance in Burkholderia multivorans. Malott RJ; Steen-Kinnaird BR; Lee TD; Speert DP Antimicrob Agents Chemother; 2012 Jan; 56(1):464-71. PubMed ID: 22006009 [TBL] [Abstract][Full Text] [Related]
20. Disruption of Quorum Sensing and Virulence in Cui C; Song S; Yang C; Sun X; Huang Y; Li K; Zhao S; Zhang Y; Deng Y Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30770405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]