BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21955600)

  • 1. Excitatory projections from the amygdala to neurons in the nucleus pontis oralis in the rat: an intracellular study.
    Xi M; Fung SJ; Sampogna S; Chase MH
    Neuroscience; 2011 Dec; 197():181-90. PubMed ID: 21955600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The amygdala and the pedunculopontine tegmental nucleus: interactions controlling active (rapid eye movement) sleep.
    Xi M; Fung SJ; Zhang J; Sampogna S; Chase MH
    Exp Neurol; 2012 Nov; 238(1):44-51. PubMed ID: 22971360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projections from the central nucleus of the amygdala to the nucleus pontis oralis in the rat: an anterograde labeling study.
    Zhang J; Xi M; Fung SJ; Sampogna S; Chase MH
    Neurosci Lett; 2012 Sep; 525(2):157-62. PubMed ID: 22884644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypocretinergic facilitation of synaptic activity of neurons in the nucleus pontis oralis of the cat.
    Xi MC; Fung SJ; Yamuy J; Morales FR; Chase MH
    Brain Res; 2003 Jun; 976(2):253-8. PubMed ID: 12763260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histaminergic modulation of excitatory synaptic transmission in the rat basolateral amygdala.
    Jiang X; Chen A; Li H
    Neuroscience; 2005; 131(3):691-703. PubMed ID: 15730874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projection neurons from the central nucleus of the amygdala to the nucleus pontis oralis.
    Fung SJ; Xi M; Zhang J; Torterolo P; Sampogna S; Morales FR; Chase MH
    J Neurosci Res; 2011 Mar; 89(3):429-36. PubMed ID: 21259329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep-related neurons in the central nucleus of the amygdala of rats and their modulation by the dorsal raphe nucleus.
    Jha SK; Ross RJ; Morrison AR
    Physiol Behav; 2005 Nov; 86(4):415-26. PubMed ID: 16137725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation.
    Shen KZ; Zhu ZT; Munhall A; Johnson SW
    Synapse; 2003 Dec; 50(4):314-9. PubMed ID: 14556236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between hypocretinergic and GABAergic systems in the control of activity of neurons in the cat pontine reticular formation.
    Xi M; Fung SJ; Yamuy J; Chase MH
    Neuroscience; 2015 Jul; 298():190-9. PubMed ID: 25892701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term depression in horizontal slices of the rat lateral amygdala.
    Kaschel T; Schubert M; Albrecht D
    Synapse; 2004 Sep; 53(3):141-50. PubMed ID: 15236346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of paired-pulse facilitation of AMPA and NMDA synaptic currents in the lateral amygdala.
    Zinebi F; Russell RT; McKernan M; Shinnick-Gallagher P
    Synapse; 2001 Nov; 42(2):115-27. PubMed ID: 11574948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in multiple forms of short-term plasticity between excitatory and inhibitory hippocampal neurons in culture.
    Kaplan MP; Wilcox KS; Dichter MA
    Synapse; 2003 Oct; 50(1):41-52. PubMed ID: 12872293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors.
    Nisenbaum ES; Berger TW; Grace AA
    Synapse; 1993 Jul; 14(3):221-42. PubMed ID: 8105549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the basolateral nucleus of the amygdala in the pathway between the amygdala and the midbrain periaqueductal gray in the rat.
    Da Costa Gomez TM; Chandler SD; Behbehani MM
    Neurosci Lett; 1996 Aug; 214(1):5-8. PubMed ID: 8873118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic organization and input-specific short-term plasticity in anterior cingulate cortical neurons with intact thalamic inputs.
    Lee CM; Chang WC; Chang KB; Shyu BC
    Eur J Neurosci; 2007 May; 25(9):2847-61. PubMed ID: 17561847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct physiological evidence for synaptic connectivity between medium-sized spiny neurons in rat nucleus accumbens in situ.
    Taverna S; van Dongen YC; Groenewegen HJ; Pennartz CM
    J Neurophysiol; 2004 Mar; 91(3):1111-21. PubMed ID: 14573550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of active (REM) sleep and motor inhibition by hypocretin in the nucleus pontis oralis of the cat.
    Xi MC; Fung SJ; Yamuy J; Morales FR; Chase MH
    J Neurophysiol; 2002 Jun; 87(6):2880-8. PubMed ID: 12037191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical stimulation of the cholinergic laterodorsal tegmental nucleus elicits scopolamine-sensitive excitatory postsynaptic potentials in medial pontine reticular formation neurons.
    Imon H; Ito K; Dauphin L; McCarley RW
    Neuroscience; 1996 Sep; 74(2):393-401. PubMed ID: 8865191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effects of electrical stimulation of posterior hypothalamus on activity of the nucleus pontis oralis' neurons].
    Deragacheva OIu; Meĭers IE; Burikov AA
    Ross Fiziol Zh Im I M Sechenova; 2004 Sep; 90(9):1094-102. PubMed ID: 15559783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A gradient of plasticity in the amygdala revealed by cortical and subcortical stimulation, in vivo.
    Yaniv D; Schafe GE; LeDoux JE; Richter-Levin G
    Neuroscience; 2001; 106(3):613-20. PubMed ID: 11591461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.