BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 21956094)

  • 1. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude?
    Overgaard J; Kristensen TN; Mitchell KA; Hoffmann AA
    Am Nat; 2011 Oct; 178 Suppl 1():S80-96. PubMed ID: 21956094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. No inbreeding depression for low temperature developmental acclimation across multiple Drosophila species.
    Kristensen TN; Loeschcke V; Bilde T; Hoffmann AA; Sgró C; Noreikienė K; Ondrésik M; Bechsgaard JS
    Evolution; 2011 Nov; 65(11):3195-201. PubMed ID: 22023585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae).
    Nyamukondiwa C; Terblanche JS; Marshall KE; Sinclair BJ
    J Evol Biol; 2011 Sep; 24(9):1927-38. PubMed ID: 21658189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological climatic limits in Drosophila: patterns and implications.
    Hoffmann AA
    J Exp Biol; 2010 Mar; 213(6):870-80. PubMed ID: 20190112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No patterns in thermal plasticity along a latitudinal gradient in Drosophila simulans from eastern Australia.
    van Heerwaarden B; Lee RF; Overgaard J; Sgrò CM
    J Evol Biol; 2014 Nov; 27(11):2541-53. PubMed ID: 25262984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia.
    Sgrò CM; Overgaard J; Kristensen TN; Mitchell KA; Cockerell FE; Hoffmann AA
    J Evol Biol; 2010 Nov; 23(11):2484-93. PubMed ID: 20874849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny.
    Stillman JH; Somero GN
    Physiol Biochem Zool; 2000; 73(2):200-8. PubMed ID: 10801398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity versus environmental canalization: population differences in thermal responses along a latitudinal gradient in Drosophila serrata.
    Liefting M; Hoffmann AA; Ellers J
    Evolution; 2009 Aug; 63(8):1954-63. PubMed ID: 19473402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions.
    Kellermann V; van Heerwaarden B; Sgrò CM; Hoffmann AA
    Science; 2009 Sep; 325(5945):1244-6. PubMed ID: 19729654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of cold tolerance in Drosophila larvae.
    Strachan LA; Tarnowski-Garner HE; Marshall KE; Sinclair BJ
    Physiol Biochem Zool; 2011; 84(1):43-53. PubMed ID: 21050129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species.
    Slabber S; Worland MR; Leinaas HP; Chown SL
    J Insect Physiol; 2007 Feb; 53(2):113-25. PubMed ID: 17222862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii.
    Jakobs R; Gariepy TD; Sinclair BJ
    J Insect Physiol; 2015 Aug; 79():1-9. PubMed ID: 25982520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the relative importance of environmental effects, carry-over effects and species differences in thermal stress resistance: a comparison of Drosophilids across field and laboratory generations.
    Schiffer M; Hangartner S; Hoffmann AA
    J Exp Biol; 2013 Oct; 216(Pt 20):3790-8. PubMed ID: 23821714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny.
    Gibert P; Huey RB
    Physiol Biochem Zool; 2001; 74(3):429-34. PubMed ID: 11331516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species.
    MacLean HJ; Sørensen JG; Kristensen TN; Loeschcke V; Beedholm K; Kellermann V; Overgaard J
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180548. PubMed ID: 31203763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. No trade-off between high and low temperature tolerance in a winter acclimatized Danish Drosophila subobscura population.
    Sørensen JG; Kristensen TN; Loeschcke V; Schou MF
    J Insect Physiol; 2015 Jun; 77():9-14. PubMed ID: 25846012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogeographic origin and thermal acclimation interact to determine survival and hsp90 expression in Drosophila species submitted to thermal stress.
    Boher F; Trefault N; Piulachs MD; Bellés X; Godoy-Herrera R; Bozinovic F
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Aug; 162(4):391-6. PubMed ID: 22561660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal plasticity is related to the hardening response of heat shock protein expression in two Bactrocera fruit flies.
    Hu JT; Chen B; Li ZH
    J Insect Physiol; 2014 Aug; 67():105-13. PubMed ID: 24992713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.