These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
415 related articles for article (PubMed ID: 21956094)
1. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? Overgaard J; Kristensen TN; Mitchell KA; Hoffmann AA Am Nat; 2011 Oct; 178 Suppl 1():S80-96. PubMed ID: 21956094 [TBL] [Abstract][Full Text] [Related]
2. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Overgaard J; Kearney MR; Hoffmann AA Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716 [TBL] [Abstract][Full Text] [Related]
3. No inbreeding depression for low temperature developmental acclimation across multiple Drosophila species. Kristensen TN; Loeschcke V; Bilde T; Hoffmann AA; Sgró C; Noreikienė K; Ondrésik M; Bechsgaard JS Evolution; 2011 Nov; 65(11):3195-201. PubMed ID: 22023585 [TBL] [Abstract][Full Text] [Related]
4. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). Nyamukondiwa C; Terblanche JS; Marshall KE; Sinclair BJ J Evol Biol; 2011 Sep; 24(9):1927-38. PubMed ID: 21658189 [TBL] [Abstract][Full Text] [Related]
5. Physiological climatic limits in Drosophila: patterns and implications. Hoffmann AA J Exp Biol; 2010 Mar; 213(6):870-80. PubMed ID: 20190112 [TBL] [Abstract][Full Text] [Related]
6. No patterns in thermal plasticity along a latitudinal gradient in Drosophila simulans from eastern Australia. van Heerwaarden B; Lee RF; Overgaard J; Sgrò CM J Evol Biol; 2014 Nov; 27(11):2541-53. PubMed ID: 25262984 [TBL] [Abstract][Full Text] [Related]
7. A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia. Sgrò CM; Overgaard J; Kristensen TN; Mitchell KA; Cockerell FE; Hoffmann AA J Evol Biol; 2010 Nov; 23(11):2484-93. PubMed ID: 20874849 [TBL] [Abstract][Full Text] [Related]
8. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900 [TBL] [Abstract][Full Text] [Related]
9. A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny. Stillman JH; Somero GN Physiol Biochem Zool; 2000; 73(2):200-8. PubMed ID: 10801398 [TBL] [Abstract][Full Text] [Related]
10. Plasticity versus environmental canalization: population differences in thermal responses along a latitudinal gradient in Drosophila serrata. Liefting M; Hoffmann AA; Ellers J Evolution; 2009 Aug; 63(8):1954-63. PubMed ID: 19473402 [TBL] [Abstract][Full Text] [Related]
11. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Kellermann V; van Heerwaarden B; Sgrò CM; Hoffmann AA Science; 2009 Sep; 325(5945):1244-6. PubMed ID: 19729654 [TBL] [Abstract][Full Text] [Related]
12. The evolution of cold tolerance in Drosophila larvae. Strachan LA; Tarnowski-Garner HE; Marshall KE; Sinclair BJ Physiol Biochem Zool; 2011; 84(1):43-53. PubMed ID: 21050129 [TBL] [Abstract][Full Text] [Related]
13. Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species. Slabber S; Worland MR; Leinaas HP; Chown SL J Insect Physiol; 2007 Feb; 53(2):113-25. PubMed ID: 17222862 [TBL] [Abstract][Full Text] [Related]
14. Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii. Jakobs R; Gariepy TD; Sinclair BJ J Insect Physiol; 2015 Aug; 79():1-9. PubMed ID: 25982520 [TBL] [Abstract][Full Text] [Related]
15. Assessing the relative importance of environmental effects, carry-over effects and species differences in thermal stress resistance: a comparison of Drosophilids across field and laboratory generations. Schiffer M; Hangartner S; Hoffmann AA J Exp Biol; 2013 Oct; 216(Pt 20):3790-8. PubMed ID: 23821714 [TBL] [Abstract][Full Text] [Related]
16. Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny. Gibert P; Huey RB Physiol Biochem Zool; 2001; 74(3):429-34. PubMed ID: 11331516 [TBL] [Abstract][Full Text] [Related]
17. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. MacLean HJ; Sørensen JG; Kristensen TN; Loeschcke V; Beedholm K; Kellermann V; Overgaard J Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180548. PubMed ID: 31203763 [TBL] [Abstract][Full Text] [Related]
18. No trade-off between high and low temperature tolerance in a winter acclimatized Danish Drosophila subobscura population. Sørensen JG; Kristensen TN; Loeschcke V; Schou MF J Insect Physiol; 2015 Jun; 77():9-14. PubMed ID: 25846012 [TBL] [Abstract][Full Text] [Related]
19. Biogeographic origin and thermal acclimation interact to determine survival and hsp90 expression in Drosophila species submitted to thermal stress. Boher F; Trefault N; Piulachs MD; Bellés X; Godoy-Herrera R; Bozinovic F Comp Biochem Physiol A Mol Integr Physiol; 2012 Aug; 162(4):391-6. PubMed ID: 22561660 [TBL] [Abstract][Full Text] [Related]
20. Thermal plasticity is related to the hardening response of heat shock protein expression in two Bactrocera fruit flies. Hu JT; Chen B; Li ZH J Insect Physiol; 2014 Aug; 67():105-13. PubMed ID: 24992713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]