BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21956117)

  • 1. Structural analyses of a purine biosynthetic enzyme from Mycobacterium tuberculosis reveal a novel bound nucleotide.
    Le Nours J; Bulloch EM; Zhang Z; Greenwood DR; Middleditch MJ; Dickson JM; Baker EN
    J Biol Chem; 2011 Nov; 286(47):40706-16. PubMed ID: 21956117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine 5'-monophosphate cyclohydrolase. A bifunctional protein requiring dimerization for transformylase activity but not for cyclohydrolase activity.
    Vergis JM; Bulock KG; Fleming KG; Beardsley GP
    J Biol Chem; 2001 Mar; 276(11):7727-33. PubMed ID: 11096114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of a bifunctional transformylase and cyclohydrolase enzyme in purine biosynthesis.
    Greasley SE; Horton P; Ramcharan J; Beardsley GP; Benkovic SJ; Wilson IA
    Nat Struct Biol; 2001 May; 8(5):402-6. PubMed ID: 11323713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of AICAR transformylase/IMP cyclohydrolase (ATIC) from Staphylococcus lugdunensis.
    Verma P; Kar B; Varshney R; Roy P; Sharma AK
    FEBS J; 2017 Dec; 284(24):4233-4261. PubMed ID: 29063699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the human and avian IMP cyclohydrolase mechanism via crystal structures with the bound XMP inhibitor.
    Wolan DW; Cheong CG; Greasley SE; Wilson IA
    Biochemistry; 2004 Feb; 43(5):1171-83. PubMed ID: 14756553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic mechanism of the cyclohydrolase activity of human aminoimidazole carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase.
    Vergis JM; Beardsley GP
    Biochemistry; 2004 Feb; 43(5):1184-92. PubMed ID: 14756554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of substrate binding in individual active sites of bifunctional human ATIC.
    Witkowska D; Cox HL; Hall TC; Wildsmith GC; Machin DC; Webb ME
    Biochim Biophys Acta Proteins Proteom; 2018 Feb; 1866(2):254-263. PubMed ID: 29042184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of human bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase/IMP cyclohydrolase in complex with potent sulfonyl-containing antifolates.
    Cheong CG; Wolan DW; Greasley SE; Horton PA; Beardsley GP; Wilson IA
    J Biol Chem; 2004 Apr; 279(17):18034-45. PubMed ID: 14966129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel function for the N-terminal nucleophile hydrolase fold demonstrated by the structure of an archaeal inosine monophosphate cyclohydrolase.
    Kang YN; Tran A; White RH; Ealick SE
    Biochemistry; 2007 May; 46(17):5050-62. PubMed ID: 17407260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The kinetic mechanism of the human bifunctional enzyme ATIC (5-amino-4-imidazolecarboxamide ribonucleotide transformylase/inosine 5'-monophosphate cyclohydrolase). A surprising lack of substrate channeling.
    Bulock KG; Beardsley GP; Anderson KS
    J Biol Chem; 2002 Jun; 277(25):22168-74. PubMed ID: 11948179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo purine nucleotide biosynthesis: cloning, sequencing and expression of a chicken PurH cDNA encoding 5-aminoimidazole-4-carboxamide-ribonucleotide transformylase-IMP cyclohydrolase.
    Ni L; Guan K; Zalkin H; Dixon JE
    Gene; 1991 Oct; 106(2):197-205. PubMed ID: 1937050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into the avian AICAR transformylase mechanism.
    Wolan DW; Greasley SE; Beardsley GP; Wilson IA
    Biochemistry; 2002 Dec; 41(52):15505-13. PubMed ID: 12501179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifunctional enzyme ATIC promotes propagation of hepatocellular carcinoma by regulating AMPK-mTOR-S6 K1 signaling.
    Li M; Jin C; Xu M; Zhou L; Li D; Yin Y
    Cell Commun Signal; 2017 Dec; 15(1):52. PubMed ID: 29246230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of avian AICAR transformylase with a multisubstrate adduct inhibitor beta-DADF identifies the folate binding site.
    Wolan DW; Greasley SE; Wall MJ; Benkovic SJ; Wilson IA
    Biochemistry; 2003 Sep; 42(37):10904-14. PubMed ID: 12974624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Case report of a rare purine synthesis disorder due to 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICAR) deficiency.
    Joy P; Madhuri V; Palocaren T; Das S; Susan Cleave Abraham S; Korula S; Koshy B; Jose J; Chandran M; Danda S
    Brain Dev; 2022 Oct; 44(9):645-649. PubMed ID: 35637059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate channelling by human IMP synthase.
    Szabados E; Wilson PK; Christopherson RI
    Adv Exp Med Biol; 1998; 431():241-4. PubMed ID: 9598067
    [No Abstract]   [Full Text] [Related]  

  • 17. Structure and functional relationships in human pur H.
    Beardsley GP; Rayl EA; Gunn K; Moroson BA; Seow H; Anderson KS; Vergis J; Fleming K; Worland S; Condon B; Davies J
    Adv Exp Med Biol; 1998; 431():221-6. PubMed ID: 9598063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between the catalytic sites of human bifunctional IMP synthase.
    Szabados E; Christopherson RI
    Int J Biochem Cell Biol; 1998 Aug; 30(8):933-42. PubMed ID: 9744084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AMPK Activation via Modulation of De Novo Purine Biosynthesis with an Inhibitor of ATIC Homodimerization.
    Asby DJ; Cuda F; Beyaert M; Houghton FD; Cagampang FR; Tavassoli A
    Chem Biol; 2015 Jul; 22(7):838-48. PubMed ID: 26144885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human AICAR transformylase: role of the 4-carboxamide of AICAR in binding and catalysis.
    Wall M; Shim JH; Benkovic SJ
    Biochemistry; 2000 Sep; 39(37):11303-11. PubMed ID: 10985775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.