These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 219563)

  • 1. Adenine compounds: cerebrovascular effects in vitro with reference to their possible involvement in migraine.
    Hardebo JE; Edvinsson L
    Stroke; 1979; 10(1):58-62. PubMed ID: 219563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses to adenine nucleotides and related compounds of isolated dog cerebral, coronary and mesenteric arteries.
    Toda N; Okunishi H; Taniyama K; Miyazaki M
    Blood Vessels; 1982; 19(5):226-36. PubMed ID: 6288147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of purines in acetylcholine-induced coronary vasodilation.
    Schrader J; Thompson CI; Hiendlmayer G; Gerlach E
    J Mol Cell Cardiol; 1982 Jul; 14(7):427-30. PubMed ID: 6294310
    [No Abstract]   [Full Text] [Related]  

  • 4. Role of nitric oxide, cyclic nucleotides, and the activation of ATP-sensitive K+ channels in the contribution of adenosine to hypoxia-induced pial artery dilation.
    Armstead WM
    J Cereb Blood Flow Metab; 1997 Jan; 17(1):100-8. PubMed ID: 8978392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of various physiologic adenine derivatives on the secretion of acid in isolated gastric glands in rabbits].
    Ainz LF; Gil-Rodrigo CE; Gómez R; Malillos M; Requejo D; Gandarias JM
    Rev Esp Fisiol; 1989 Sep; 45(3):281-6. PubMed ID: 2616875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Basic mechanisms of the migraine physiopathology].
    Martínez F; Castillo J; Noya M
    Rev Neurol; 1995; 23(122):800-18. PubMed ID: 7497245
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of adenosine in regulation of cerebral blood flow: effects of theophylline during normoxia and hypoxia.
    Morii S; Ngai AC; Ko KR; Winn HR
    Am J Physiol; 1987 Jul; 253(1 Pt 2):H165-75. PubMed ID: 3037925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The local regulation of cerebral blood flow.
    Berne RM; Winn HR; Rubio R
    Prog Cardiovasc Dis; 1981; 24(3):243-60. PubMed ID: 6795677
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of inosine on pial arterioles: potentiation of adenosine-induced vasodilation.
    Ngai AC; Monsen MR; Ibayashi S; Ko KR; Winn HR
    Am J Physiol; 1989 Mar; 256(3 Pt 2):H603-6. PubMed ID: 2923227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypotension dilates pial arteries by KATP and kca channel activation.
    Armstead WM
    Brain Res; 1999 Jan; 816(1):158-64. PubMed ID: 9878717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of adenosine triphosphate and some derivatives on cerebral blood flow and metabolism.
    Forrester T; Harper AM; MacKenzie ET; Thomson EM
    J Physiol; 1979 Nov; 296():343-55. PubMed ID: 119042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of algogenic substances in human erythrocytes.
    Bleehen T; Hobbiger F; Keele CA
    J Physiol; 1976 Oct; 262(1):131-49. PubMed ID: 994034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dilatatory action of adenosine on pial arteries of cats and its inhibition by theophylline.
    Wahl M; Kuschinsky W
    Pflugers Arch; 1976 Mar; 362(1):55-9. PubMed ID: 943778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine receptor activation by adenine nucleotides requires conversion of the nucleotides to adenosine.
    Bruns RF
    Naunyn Schmiedebergs Arch Pharmacol; 1980; 315(1):5-13. PubMed ID: 6264330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antidiuretic effects of purinoceptor agonists injected into the hypothalamic paraventricular nucleus of water-loaded, ethanol-anesthetized rats.
    Mori M; Tsushima H; Matsuda T
    Neuropharmacology; 1992 Jun; 31(6):585-92. PubMed ID: 1407398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological characterization of GABA receptors mediating vasodilation of verebral arteries in vitro.
    Edvinsson L; Krause DN
    Brain Res; 1979 Sep; 173(1):89-97. PubMed ID: 226209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P1-purinoceptors in the cerebrovascular bed of the goat in vivo.
    Torregrosa G; Terrasa JC; Salom JB; Miranda FJ; Campos V; Alborch E
    Eur J Pharmacol; 1988 Apr; 149(1-2):17-24. PubMed ID: 3135195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cGMP and cAMP in prostaglandin-induced pial artery dilation and increased CSF opioid concentration.
    Armstead WM
    Am J Physiol; 1996 Jul; 271(1 Pt 2):H166-72. PubMed ID: 8760172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of nitric oxide, adenosine, N-methyl-D-aspartate receptors, and neuronal activation in hypoxia-induced pial arteriolar dilation in rats.
    Pelligrino DA; Wang Q; Koenig HM; Albrecht RF
    Brain Res; 1995 Dec; 704(1):61-70. PubMed ID: 8750962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of adenine nucleotides, adenosine, and inorganic phosphate in the regulation of skeletal muscle blood flow.
    Dobson JG; Rubio R; Berne RM
    Circ Res; 1971 Oct; 29(4):375-84. PubMed ID: 5315522
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.