These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21956367)

  • 41. Application of three-dimensional (3D) magnetic resonance (MR) Multi-Echo iN Steady-state Acquisition sequences in preoperative evaluation of lumbar disc herniation: a prospective study.
    Pan X; Wen Y; Huang K; Li J; Li W; Yan W; Wen D; Zhang M; Wang S; Zhang X; Li Z; Rong X
    Quant Imaging Med Surg; 2024 Oct; 14(10):7540-7550. PubMed ID: 39429613
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional volumetric MRI with isotropic resolution: improved speed of acquisition, spatial resolution and assessment of lesion conspicuity in patients with recurrent soft tissue sarcoma.
    Ahlawat S; Morris C; Fayad LM
    Skeletal Radiol; 2016 May; 45(5):645-52. PubMed ID: 26897528
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapid whole-brain magnetic resonance imaging with isotropic resolution at 3 Tesla.
    Edelman RR; Dunkle E; Koktzoglou I; Griffin A; Russell EJ; Ankenbrandt W; Ragin A; Carrillo A
    Invest Radiol; 2009 Jan; 44(1):54-9. PubMed ID: 19060723
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MR imaging of the inner ear and cerebellopontine angle: comparison of three-dimensional and two-dimensional sequences.
    Czerny C; Rand T; Gstoettner W; Woelfl G; Imhof H; Trattnig S
    AJR Am J Roentgenol; 1998 Mar; 170(3):791-6. PubMed ID: 9490977
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Whole-body 3D T1-weighted MR imaging in patients with prostate cancer: feasibility and evaluation in screening for metastatic disease.
    Pasoglou V; Michoux N; Peeters F; Larbi A; Tombal B; Selleslagh T; Omoumi P; Vande Berg BC; Lecouvet FE
    Radiology; 2015 Apr; 275(1):155-66. PubMed ID: 25513855
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Magnetic resonance study of patellofemoral cartilage with a fat-suppressed T1-3D gradient-echo sequence: a comparison with other acquisition technics at medium field strength].
    Cardone G; Minio Paluello GB; Lo Presti G; Gagliardo O; Gallucci M; Castrucci M
    Radiol Med; 1997 Sep; 94(3):150-6. PubMed ID: 9446117
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SSFP and GRE phase contrast imaging using a three-echo readout.
    Nielsen JF; Nayak KS
    Magn Reson Med; 2007 Dec; 58(6):1288-93. PubMed ID: 17969073
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detection of structural lesions of the sacroiliac joints in patients with spondyloarthritis: A comparison of T1-weighted 3D spoiled gradient echo MRI and MRI-based synthetic CT versus T1-weighted turbo spin echo MRI.
    Krabbe S; Møller JM; Hadsbjerg AEF; Ewald A; Hangaard S; Pedersen SJ; Østergaard M
    Skeletal Radiol; 2024 Nov; 53(11):2459-2468. PubMed ID: 38592521
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Articular cartilage of the knee: rapid three-dimensional MR imaging at 3.0 T with IDEAL balanced steady-state free precession--initial experience.
    Gold GE; Reeder SB; Yu H; Kornaat P; Shimakawa AS; Johnson JW; Pelc NJ; Beaulieu CF; Brittain JH
    Radiology; 2006 Aug; 240(2):546-51. PubMed ID: 16801369
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison between balanced steady-state free precession and standard spoiled gradient echo magnetization transfer ratio imaging in multiple sclerosis: methodical and clinical considerations.
    Amann M; Sprenger T; Naegelin Y; Reinhardt J; Kuster P; Hirsch JG; Kappos L; Radue EW; Stippich C; Bieri O
    Neuroimage; 2015 Mar; 108():87-94. PubMed ID: 25536494
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Liver lesion conspicuity during real-time MR-guided radiofrequency applicator placement using spoiled gradient echo and balanced steady-state free precession imaging.
    Rempp H; Loh H; Hoffmann R; Rothgang E; Pan L; Claussen CD; Clasen S
    J Magn Reson Imaging; 2014 Aug; 40(2):432-9. PubMed ID: 24677447
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of three-dimensional isotropic T1-weighted fast spin-echo MR arthrography with two-dimensional MR arthrography of the shoulder.
    Choo HJ; Lee SJ; Kim OH; Seo SS; Kim JH
    Radiology; 2012 Mar; 262(3):921-31. PubMed ID: 22267587
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fat-suppressed volume isotropic turbo spin echo acquisition (VISTA) MR imaging in evaluating radial and root tears of the meniscus: focusing on reader-defined axial reconstruction.
    Lim D; Lee YH; Kim S; Song HT; Suh JS
    Eur J Radiol; 2013 Dec; 82(12):2296-302. PubMed ID: 24074646
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detection of focal hepatic lesions with MR imaging: prospective comparison of T2-weighted fast spin-echo with and without fat suppression, T2-weighted breath-hold fast spin-echo, and gadolinium chelate-enhanced 3D gradient-recalled imaging.
    Soyer P; de Givry SC; Gueye C; Lenormand S; Somveille E; Scherrer A
    AJR Am J Roentgenol; 1996 May; 166(5):1115-21. PubMed ID: 8615254
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of T1-weighted fast spin-echo and T1-weighted fluid-attenuated inversion recovery images of the lumbar spine at 3.0 Tesla.
    Lavdas E; Vlychou M; Arikidis N; Kapsalaki E; Roka V; Fezoulidis IV
    Acta Radiol; 2010 Apr; 51(3):290-5. PubMed ID: 20170294
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-resolution T1-weighted gradient echo imaging for liver MRI using parallel imaging at high-acceleration factors.
    Yoon JH; Lee JM; Yu MH; Kim EJ; Han JK; Choi BI
    Abdom Imaging; 2014 Aug; 39(4):711-21. PubMed ID: 24557640
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Uterine tumors: comparison of 3D versus 2D T2-weighted turbo spin-echo MR imaging at 3.0 T--initial experience.
    Hori M; Kim T; Onishi H; Ueguchi T; Tatsumi M; Nakamoto A; Tsuboyama T; Tomoda K; Tomiyama N
    Radiology; 2011 Jan; 258(1):154-63. PubMed ID: 21045182
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High spatial resolution, respiratory-gated, t1-weighted magnetic resonance imaging of the liver and the biliary tract during the hepatobiliary phase of gadoxetic Acid-enhanced magnetic resonance imaging.
    Lee ES; Lee JM; Yu MH; Shin CI; Woo HS; Joo I; Stemmer A; Han JK; Choi BI
    J Comput Assist Tomogr; 2014; 38(3):360-6. PubMed ID: 24681858
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advantages of a T1-Weighted Gradient-Recalled Echo (GRE) Sequence With a Radial 3D Sampling Approach Versus 2D Turbo Spin-Echo and Cartesian 3D GRE Sequences in Head and Neck MRI.
    Fahlenkamp UL; Siepmann S; Fehrenbach U; Thieme N; Döllinger F; Hamm B; Denecke T
    AJR Am J Roentgenol; 2020 Apr; 214(4):747-753. PubMed ID: 31913067
    [No Abstract]   [Full Text] [Related]  

  • 60. Comparison of the added value of contrast-enhanced 3D fluid-attenuated inversion recovery and magnetization-prepared rapid acquisition of gradient echo sequences in relation to conventional postcontrast T1-weighted images for the evaluation of leptomeningeal diseases at 3T.
    Fukuoka H; Hirai T; Okuda T; Shigematsu Y; Sasao A; Kimura E; Hirano T; Yano S; Murakami R; Yamashita Y
    AJNR Am J Neuroradiol; 2010 May; 31(5):868-73. PubMed ID: 20037130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.