These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21956482)

  • 21. Indaceno-Based Conjugated Polymers for Polymer Solar Cells.
    Yin Y; Zhang Y; Zhao L
    Macromol Rapid Commun; 2018 Jul; 39(14):e1700697. PubMed ID: 29314375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing.
    Liu Z; Lau SP; Yan F
    Chem Soc Rev; 2015 Aug; 44(15):5638-79. PubMed ID: 26024242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organic solar cells with graphene electrodes and vapor printed poly(3,4-ethylenedioxythiophene) as the hole transporting layers.
    Park H; Howden RM; Barr MC; Bulović V; Gleason K; Kong J
    ACS Nano; 2012 Jul; 6(7):6370-7. PubMed ID: 22724887
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graphene doping methods and device applications.
    Oh JS; Kim KN; Yeom GY
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1120-33. PubMed ID: 24749416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transparent flexible organic transistors based on monolayer graphene electrodes on plastic.
    Lee WH; Park J; Sim SH; Jo SB; Kim KS; Hong BH; Cho K
    Adv Mater; 2011 Apr; 23(15):1752-6. PubMed ID: 21491508
    [No Abstract]   [Full Text] [Related]  

  • 26. Graphene versus carbon nanotubes for chemical sensor and fuel cell applications.
    Kauffman DR; Star A
    Analyst; 2010 Nov; 135(11):2790-7. PubMed ID: 20733998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduced graphene oxide electrodes for large area organic electronics.
    Wöbkenberg PH; Eda G; Leem DS; de Mello JC; Bradley DD; Chhowalla M; Anthopoulos TD
    Adv Mater; 2011 Apr; 23(13):1558-62. PubMed ID: 21360779
    [No Abstract]   [Full Text] [Related]  

  • 28. Graphene oxide as a multi-functional p-dopant of transparent single-walled carbon nanotube films for optoelectronic devices.
    Han JT; Kim JS; Jo SB; Kim SH; Kim JS; Kang B; Jeong HJ; Jeong SY; Lee GW; Cho K
    Nanoscale; 2012 Dec; 4(24):7735-42. PubMed ID: 23135484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organic photovoltaic solar cells with cathode modified by ZnO.
    Kim HP; Yusoff AR; Jang J
    J Nanosci Nanotechnol; 2013 Jul; 13(7):5142-7. PubMed ID: 23901543
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Semi-Transparent Organic Photovoltaic Cells with Dielectric/Metal/Dielectric Top Electrode: Influence of the Metal on Their Performances.
    Cattin L; Louarn G; Morsli M; Bernède JC
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33557016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thinnest two-dimensional nanomaterial-graphene for solar energy.
    Hu YH; Wang H; Hu B
    ChemSusChem; 2010 Jul; 3(7):782-96. PubMed ID: 20544792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible organic memory devices with multilayer graphene electrodes.
    Ji Y; Lee S; Cho B; Song S; Lee T
    ACS Nano; 2011 Jul; 5(7):5995-6000. PubMed ID: 21662978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution processed reduced graphene oxide electrodes for organic photovoltaics.
    Petridis C; Konios D; Stylianakis MM; Kakavelakis G; Sygletou M; Savva K; Tzourmpakis P; Krassas M; Vaenas N; Stratakis E; Kymakis E
    Nanoscale Horiz; 2016 Sep; 1(5):375-382. PubMed ID: 32260627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unraveling Sunlight by Transparent Organic Semiconductors toward Photovoltaic and Photosynthesis.
    Liu Y; Cheng P; Li T; Wang R; Li Y; Chang SY; Zhu Y; Cheng HW; Wei KH; Zhan X; Sun B; Yang Y
    ACS Nano; 2019 Feb; 13(2):1071-1077. PubMed ID: 30604955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 14.7% Efficiency Organic Photovoltaic Cells Enabled by Active Materials with a Large Electrostatic Potential Difference.
    Yao H; Cui Y; Qian D; Ponseca CS; Honarfar A; Xu Y; Xin J; Chen Z; Hong L; Gao B; Yu R; Zu Y; Ma W; Chabera P; Pullerits T; Yartsev A; Gao F; Hou J
    J Am Chem Soc; 2019 May; 141(19):7743-7750. PubMed ID: 31017418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative analysis of the role of the first layer in p- and n-type organic field-effect transistors with graphene electrodes.
    Wen Y; Chen J; Zhang L; Sun X; Zhao Y; Guo Y; Yu G; Liu Y
    Adv Mater; 2012 Mar; 24(11):1471-5. PubMed ID: 22344790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of graphene for electrochemical energy storage.
    Raccichini R; Varzi A; Passerini S; Scrosati B
    Nat Mater; 2015 Mar; 14(3):271-9. PubMed ID: 25532074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene nanoribbon electrical decoupling from metallic substrates.
    Borriello I; Cantele G; Ninno D
    Nanoscale; 2013 Jan; 5(1):291-8. PubMed ID: 23160545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transfer of large-area graphene films for high-performance transparent conductive electrodes.
    Li X; Zhu Y; Cai W; Borysiak M; Han B; Chen D; Piner RD; Colombo L; Ruoff RS
    Nano Lett; 2009 Dec; 9(12):4359-63. PubMed ID: 19845330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene-based multilayers constructed from layer-by-layer self-assembly techniques.
    Yu B; Liu X; Cong H; Yuan H; Wang D; Li Z
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1145-53. PubMed ID: 24749418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.