These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21956565)

  • 1. Site-specific incorporation of unnatural amino acids into proteins in mammalian cells.
    Hino N; Sakamoto K; Yokoyama S
    Methods Mol Biol; 2012; 794():215-28. PubMed ID: 21956565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An enhanced system for unnatural amino acid mutagenesis in E. coli.
    Young TS; Ahmad I; Yin JA; Schultz PG
    J Mol Biol; 2010 Jan; 395(2):361-74. PubMed ID: 19852970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic incorporation of unnatural amino acids into proteins in mammalian cells.
    Liu W; Brock A; Chen S; Chen S; Schultz PG
    Nat Methods; 2007 Mar; 4(3):239-44. PubMed ID: 17322890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-specific incorporation of non-natural amino acids into proteins in mammalian cells with an expanded genetic code.
    Hino N; Hayashi A; Sakamoto K; Yokoyama S
    Nat Protoc; 2006; 1(6):2957-62. PubMed ID: 17406555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Code Expansion of Mammalian Cells with Unnatural Amino Acids.
    Brown KA; Deiters A
    Curr Protoc Chem Biol; 2015 Sep; 7(3):187-199. PubMed ID: 26331526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic tRNA acylation by acid and alpha-hydroxy acid analogues of amino acids.
    Owczarek A; Safro M; Wolfson AD
    Biochemistry; 2008 Jan; 47(1):301-7. PubMed ID: 18067322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity.
    Stokes AL; Miyake-Stoner SJ; Peeler JC; Nguyen DP; Hammer RP; Mehl RA
    Mol Biosyst; 2009 Sep; 5(9):1032-8. PubMed ID: 19668869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating permissive site-specific unnatural aminoacyl-tRNA synthetases.
    Miyake-Stoner SJ; Refakis CA; Hammill JT; Lusic H; Hazen JL; Deiters A; Mehl RA
    Biochemistry; 2010 Mar; 49(8):1667-77. PubMed ID: 20082521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression.
    Anderson JC; Schultz PG
    Biochemistry; 2003 Aug; 42(32):9598-608. PubMed ID: 12911301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity.
    Santoro SW; Wang L; Herberich B; King DS; Schultz PG
    Nat Biotechnol; 2002 Oct; 20(10):1044-8. PubMed ID: 12244330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An unnatural base pair for incorporating amino acid analogs into proteins.
    Hirao I; Ohtsuki T; Fujiwara T; Mitsui T; Yokogawa T; Okuni T; Nakayama H; Takio K; Yabuki T; Kigawa T; Kodama K; Yokogawa T; Nishikawa K; Yokoyama S
    Nat Biotechnol; 2002 Feb; 20(2):177-82. PubMed ID: 11821864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An expanded genetic code with a functional quadruplet codon.
    Anderson JC; Wu N; Santoro SW; Lakshman V; King DS; Schultz PG
    Proc Natl Acad Sci U S A; 2004 May; 101(20):7566-71. PubMed ID: 15138302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving orthogonal tRNA-synthetase recognition for efficient unnatural amino acid incorporation and application in mammalian cells.
    Takimoto JK; Adams KL; Xiang Z; Wang L
    Mol Biosyst; 2009 Sep; 5(9):931-4. PubMed ID: 19668857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unnatural amino acid replacement in a yeast G protein-coupled receptor in its native environment.
    Huang LY; Umanah G; Hauser M; Son C; Arshava B; Naider F; Becker JM
    Biochemistry; 2008 May; 47(20):5638-48. PubMed ID: 18419133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An expanding genetic code.
    Xie J; Schultz PG
    Methods; 2005 Jul; 36(3):227-38. PubMed ID: 16076448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient incorporation of unnatural amino acids into proteins in Escherichia coli.
    Ryu Y; Schultz PG
    Nat Methods; 2006 Apr; 3(4):263-5. PubMed ID: 16554830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved system for the generation and analysis of mutant proteins containing unnatural amino acids in Saccharomyces cerevisiae.
    Chen S; Schultz PG; Brock A
    J Mol Biol; 2007 Aug; 371(1):112-22. PubMed ID: 17560600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing of N-terminal unnatural amino acids in recombinant human interferon-beta in Escherichia coli.
    Wang A; Winblade Nairn N; Johnson RS; Tirrell DA; Grabstein K
    Chembiochem; 2008 Jan; 9(2):324-30. PubMed ID: 18098265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic incorporation of an aliphatic keto-containing amino acid into proteins for their site-specific modifications.
    Huang Y; Wan W; Russell WK; Pai PJ; Wang Z; Russell DH; Liu W
    Bioorg Med Chem Lett; 2010 Feb; 20(3):878-80. PubMed ID: 20074948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crucial optimization of translational components towards efficient incorporation of unnatural amino acids into proteins in mammalian cells.
    Xiang L; Moncivais K; Jiang F; Willams B; Alfonta L; Zhang ZJ
    PLoS One; 2013; 8(7):e67333. PubMed ID: 23874413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.