BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21956580)

  • 1. Monitoring of breathing phases using a bioacoustic method in healthy awake subjects.
    Alshaer H; Fernie GR; Bradley TD
    J Clin Monit Comput; 2011 Oct; 25(5):285-94. PubMed ID: 21956580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bioacoustic method for timing of the different phases of the breathing cycle and monitoring of breathing frequency.
    Hult P; Wranne B; Ask P
    Med Eng Phys; 2000 Jul; 22(6):425-33. PubMed ID: 11086254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between wheezing and lung mechanics during methacholine-induced bronchoconstriction in asthmatic subjects.
    Spence DP; Graham DR; Jamieson G; Cheetham BM; Calverley PM; Earis JE
    Am J Respir Crit Care Med; 1996 Aug; 154(2 Pt 1):290-4. PubMed ID: 8756796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Respiratory Rates Using the Built-in Microphone of a Smartphone or Headset.
    Nam Y; Reyes BA; Chon KH
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1493-1501. PubMed ID: 26415194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adventitious and Normal Lung Sounds in the General Population: Comparison of Standardized and Spontaneous Breathing.
    Jácome C; Aviles-Solis JC; Uhre ÅM; Pasterkamp H; Melbye H
    Respir Care; 2018 Nov; 63(11):1379-1387. PubMed ID: 30087195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upper airway resistance changes from inspiration to expiration during wakefulness is a predictor of sleep apnea: A pilot study.
    Soltanzadeh R; Moussavi Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2231-4. PubMed ID: 26736735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inspiratory and expiratory vesicular breath sounds.
    Ploysongsang Y; Iyer VK; Ramamoorthy PA
    Respiration; 1990; 57(5):313-7. PubMed ID: 2284508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiratory sounds in healthy people: a systematic review.
    Oliveira A; Marques A
    Respir Med; 2014 Apr; 108(4):550-70. PubMed ID: 24491278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of respiratory sounds at the external ear.
    Pressler GA; Mansfield JP; Pasterkamp H; Wodicka GR
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2089-96. PubMed ID: 15605855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of resistive inspiratory and expiratory loading on cardio-respiratory interaction in healthy subjects.
    Kabir MM; Immanuel SA; Tafreshi R; Saint DA; Baumert M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():710-3. PubMed ID: 25570057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep-wake evaluation from whole-night non-contact audio recordings of breathing sounds.
    Dafna E; Tarasiuk A; Zigel Y
    PLoS One; 2015; 10(2):e0117382. PubMed ID: 25710495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human forced expiratory noise. Origin, apparatus and possible diagnostic applications.
    Korenbaum VI; Pochekutova IA; Kostiv AE; Malaeva VV; Safronova MA; Kabantsova OI; Shin SN
    J Acoust Soc Am; 2020 Dec; 148(6):3385. PubMed ID: 33379875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of remote continuous respiratory rate monitoring technologies intended for low care clinical settings: a prospective observational study.
    van Loon K; Peelen LM; van de Vlasakker EC; Kalkman CJ; van Wolfswinkel L; van Zaane B
    Can J Anaesth; 2018 Dec; 65(12):1324-1332. PubMed ID: 30194672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breath Sound Intensity during Tidal Breathing in COPD Patients.
    Ishimatsu A; Nakano H; Nogami H; Yoshida M; Iwanaga T; Hoshino T
    Intern Med; 2015; 54(10):1183-91. PubMed ID: 25986254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of intratracheal accumulation of thick secretions by using continuous monitoring of respiratory acoustic spectrum: a preliminary analysis.
    Moon YJ; Bechtel AJ; Kim SH; Kim JW; Thiele RH; Blank RS
    J Clin Monit Comput; 2020 Aug; 34(4):763-770. PubMed ID: 31327100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the agreement of tidal breathing parameters measured simultaneously using pneumotachography and structured light plethysmography.
    Motamedi-Fakhr S; Iles R; Barney A; de Boer W; Conlon J; Khalid A; Wilson RC
    Physiol Rep; 2017 Feb; 5(3):. PubMed ID: 28193785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of expiratory flow limitation in COPD using the forced oscillation technique.
    Dellacà RL; Santus P; Aliverti A; Stevenson N; Centanni S; Macklem PT; Pedotti A; Calverley PM
    Eur Respir J; 2004 Feb; 23(2):232-40. PubMed ID: 14979497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic change in respiratory resistance during inspiratory and expiratory phases of tidal breathing in patients with chronic obstructive pulmonary disease.
    Yamauchi Y; Kohyama T; Jo T; Nagase T
    Int J Chron Obstruct Pulmon Dis; 2012; 7():259-69. PubMed ID: 22589578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inspiratory muscle fatigue increases sympathetic vasomotor outflow and blood pressure during submaximal exercise.
    Katayama K; Iwamoto E; Ishida K; Koike T; Saito M
    Am J Physiol Regul Integr Comp Physiol; 2012 May; 302(10):R1167-75. PubMed ID: 22461178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral characteristics of airway opening and chest wall tidal flows in spontaneously breathing preterm infants.
    Habib RH; Pyon KH; Courtney SE; Aghai ZH
    J Appl Physiol (1985); 2003 May; 94(5):1933-40. PubMed ID: 12524380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.