These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 21956900)

  • 21. Modelling microbial competition in nitrifying biofilm reactors.
    Vannecke TP; Volcke EI
    Biotechnol Bioeng; 2015 Dec; 112(12):2550-61. PubMed ID: 26084447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of loading rate and oxygen supply on nitrification in a non-porous membrane biofilm reactor.
    Hwang JH; Cicek N; Oleszkiewicz J
    Water Res; 2009 Jul; 43(13):3301-7. PubMed ID: 19473684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distributions and activities of ammonia oxidizing bacteria and polyphosphate accumulating organisms in a pumped-flow biofilm reactor.
    Wu G; Nielsen M; Sorensen K; Zhan X; Rodgers M
    Water Res; 2009 Oct; 43(18):4599-609. PubMed ID: 19656544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuum heterogeneous biofilm model--a simple and accurate method for effectiveness factor determination.
    Gonzo EE; Wuertz S; Rajal VB
    Biotechnol Bioeng; 2012 Jul; 109(7):1779-90. PubMed ID: 22252922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradation of phenol with chromium(VI) reduction in an anaerobic fixed-biofilm process--kinetic model and reactor performance.
    Lin YH; Wu CL; Hsu CH; Li HL
    J Hazard Mater; 2009 Dec; 172(2-3):1394-401. PubMed ID: 19726129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, Part I: Semi-empirical model development.
    Sen D; Randall CW
    Water Environ Res; 2008 May; 80(5):439-53. PubMed ID: 18605383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biological waste gas treatment with a modified rotating biological contactor. II. Effect of operating parameters on process performance and mathematical modeling.
    Vinage I; von Rohr PR
    Bioprocess Biosyst Eng; 2003 Nov; 26(1):75-82. PubMed ID: 14505166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition.
    Tsai YP
    J Basic Microbiol; 2005; 45(6):475-85. PubMed ID: 16304710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Persistence in a single species CSTR model with suspended flocs and wall attached biofilms.
    Mašić A; Eberl HJ
    Bull Math Biol; 2012 Apr; 74(4):1001-26. PubMed ID: 22131185
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling and simulation of steady-state phenol degradation in a pulsed plate bioreactor with immobilised cells of Nocardia hydrocarbonoxydans.
    Shetty KV; Verma DK; Srinikethan G
    Bioprocess Biosyst Eng; 2011 Jan; 34(1):45-56. PubMed ID: 20563604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A membrane biofilm reactor achieves aerobic methane oxidation coupled to denitrification (AME-D) with high efficiency.
    Modin O; Fukushi K; Nakajima F; Yamamoto K
    Water Sci Technol; 2008; 58(1):83-7. PubMed ID: 18653940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrification kinetics of activated sludge-biofilm system: a mathematical model.
    Thalla AK; Bhargava R; Kumar P
    Bioresour Technol; 2010 Aug; 101(15):5827-35. PubMed ID: 20338756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Closed-loop control of ammonium concentration in nitritation: convenient for reactor operation but also for modeling.
    Jemaat Z; Bartrolí A; Isanta E; Carrera J; Suárez-Ojeda ME; Pérez J
    Bioresour Technol; 2013 Jan; 128():655-63. PubMed ID: 23220112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of biodegradation of phenolic wastewater in a biofilm reactor.
    Lin YH; Hsien TY
    Water Sci Technol; 2009; 59(9):1703-11. PubMed ID: 19448304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The impacts of the AOC concentration on biofilm formation under higher shear force condition.
    Tsai YP; Pai TY; Qiu JM
    J Biotechnol; 2004 Jul; 111(2):155-67. PubMed ID: 15219402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of mass transfer in overall substrate removal rate in a sequential aerobic sludge blanket reactor treating a non-inhibitory substrate.
    Huang JS; Tsao CW; Lu YC; Chou HH
    Water Res; 2011 Oct; 45(15):4562-70. PubMed ID: 21719066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic and stoichiometric characterization of a fixed biofilm reactor by pulse respirometry.
    Ordaz A; Oliveira CS; Quijano G; Ferreira EC; Alves M; Thalasso F
    J Biotechnol; 2012 Jan; 157(1):173-9. PubMed ID: 22100265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of a methanotrophic culture in a membrane-aerated biofilm reactor.
    Rishell S; Casey E; Glennon B; Hamer G
    Biotechnol Prog; 2004; 20(4):1082-90. PubMed ID: 15296433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of drinking water biofilm in flow/non-flow conditions.
    Manuel CM; Nunes OC; Melo LF
    Water Res; 2007 Feb; 41(3):551-62. PubMed ID: 17184812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of detachment on substrate removal and microbial ecology in a heterotrophic/autotrophic biofilm.
    Elenter D; Milferstedt K; Zhang W; Hausner M; Morgenroth E
    Water Res; 2007 Dec; 41(20):4657-71. PubMed ID: 17655911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.