These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 21956900)

  • 41. Conditions for partial nitrification in biofilm reactors and a kinetic explanation.
    Pérez J; Costa E; Kreft JU
    Biotechnol Bioeng; 2009 Jun; 103(2):282-95. PubMed ID: 19189394
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimizing sequencing batch reactor (SBR) reactor operation for treatment of dairy wastewater with aerobic granular sludge.
    Wichern M; Lübken M; Horn H
    Water Sci Technol; 2008; 58(6):1199-206. PubMed ID: 18845857
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp. strain DCA1.
    Hage JC; Van Houten RT; Tramper J; Hartmans S
    Appl Microbiol Biotechnol; 2004 Jun; 64(5):718-25. PubMed ID: 15034684
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of hydrodynamic conditions on biofilm behavior in a methanogenic inverse turbulent bed reactor.
    Michaud S; Bernet N; Roustan M; Delgenès JP
    Biotechnol Prog; 2003; 19(3):858-63. PubMed ID: 12790650
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Measuring local flow velocities and biofilm structure in biofilm systems with magnetic resonance imaging (MRI).
    Manz B; Volke F; Goll D; Horn H
    Biotechnol Bioeng; 2003 Nov; 84(4):424-32. PubMed ID: 14574699
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanisms of transient nitric oxide and nitrous oxide production in a complex biofilm.
    Schreiber F; Loeffler B; Polerecky L; Kuypers MM; de Beer D
    ISME J; 2009 Nov; 3(11):1301-13. PubMed ID: 19516281
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nitritation performance in membrane-aerated biofilm reactors differs from conventional biofilm systems.
    Lackner S; Terada A; Horn H; Henze M; Smets BF
    Water Res; 2010 Dec; 44(20):6073-84. PubMed ID: 20801477
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of nutrient supply on cell growth in bioreactor design for tissue engineering of hematopoietic cells.
    Pathi P; Ma T; Locke BR
    Biotechnol Bioeng; 2005 Mar; 89(7):743-58. PubMed ID: 15696509
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of steady-state biofilm model to characterize aerobic granular sludge.
    Cui F; Kim M
    Environ Sci Technol; 2013; 47(21):12291-6. PubMed ID: 24024938
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magnetic resonance microscopy analysis of advective transport in a biofilm reactor.
    Gjersing EL; Codd SL; Seymour JD; Stewart PS
    Biotechnol Bioeng; 2005 Mar; 89(7):822-34. PubMed ID: 15696510
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Respiration rate measurement in a submerged fixed bed reactor.
    Carrión M; Asaff A; Thalasso F
    Water Sci Technol; 2003; 47(5):201-4. PubMed ID: 12701929
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Contributions of biofilm versus suspended bacteria in an aerobic circulating-bed biofilm reactor.
    Yu H; Kim BJ; Rittmann BE
    Water Sci Technol; 2001; 43(1):303-10. PubMed ID: 11379105
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simulation of biofilm growth, substrate conversion and mass transfer under different hydrodynamic conditions.
    Horn H; Wäsche S; Hempel DC
    Water Sci Technol; 2002; 46(1-2):249-52. PubMed ID: 12216631
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The continuum heterogeneous biofilm model with multiple limiting substrate Monod kinetics.
    Gonzo EE; Wuertz S; Rajal VB
    Biotechnol Bioeng; 2014 Nov; 111(11):2252-64. PubMed ID: 24888450
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of wall growth on the kinetic modeling of nitrite oxidation in a CSTR.
    Dokianakis SN; Kornaros M; Lyberatos G
    Biotechnol Bioeng; 2006 Mar; 93(4):718-26. PubMed ID: 16345085
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multi-species nitrifying biofilm model (MSNBM) including free ammonia and free nitrous acid inhibition and oxygen limitation.
    Park S; Bae W; Rittmann BE
    Biotechnol Bioeng; 2010 Apr; 105(6):1115-30. PubMed ID: 19998282
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluating trends in biofilm density using the UMCCA model.
    Laspidou CS; Rittmann BE
    Water Res; 2004; 38(14-15):3362-72. PubMed ID: 15276753
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A general description of detachment for multidimensional modelling of biofilms.
    Xavier Jde B; Picioreanu C; van Loosdrecht MC
    Biotechnol Bioeng; 2005 Sep; 91(6):651-69. PubMed ID: 15918167
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Respirometric evaluation and modeling of glucose utilization by Escherichia coli under aerobic and mesophilic cultivation conditions.
    Insel G; Celikyilmaz G; Ucisik-Akkaya E; Yesiladali K; Cakar ZP; Tamerler C; Orhon D
    Biotechnol Bioeng; 2007 Jan; 96(1):94-105. PubMed ID: 16937401
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extractive biofilm membrane bioreactor with energy recovery from excess aeration and new membrane fouling control.
    Phattaranawik J; Leiknes T
    Bioresour Technol; 2011 Feb; 102(3):2301-7. PubMed ID: 21074416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.