BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 21957170)

  • 1. Translating glutamate: from pathophysiology to treatment.
    Javitt DC; Schoepp D; Kalivas PW; Volkow ND; Zarate C; Merchant K; Bear MF; Umbricht D; Hajos M; Potter WZ; Lee CM
    Sci Transl Med; 2011 Sep; 3(102):102mr2. PubMed ID: 21957170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamate NMDA receptors in pathophysiology and pharmacotherapy of selected nervous system diseases.
    Dobrek L; Thor P
    Postepy Hig Med Dosw (Online); 2011 Jun; 65():338-46. PubMed ID: 21677358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of glutamate in neurotransmission and in neurologic disease.
    Greenamyre JT
    Arch Neurol; 1986 Oct; 43(10):1058-63. PubMed ID: 2428340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment.
    Pittenger C; Bloch MH; Williams K
    Pharmacol Ther; 2011 Dec; 132(3):314-32. PubMed ID: 21963369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission.
    Montanari M; Martella G; Bonsi P; Meringolo M
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging Evidence for the Widespread Role of Glutamatergic Dysfunction in Neuropsychiatric Diseases.
    McGrath T; Baskerville R; Rogero M; Castell L
    Nutrients; 2022 Feb; 14(5):. PubMed ID: 35267893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment.
    Rojas DC
    J Neural Transm (Vienna); 2014 Aug; 121(8):891-905. PubMed ID: 24752754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.
    Levite M
    J Neural Transm (Vienna); 2014 Aug; 121(8):1029-75. PubMed ID: 25081016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment.
    Moghaddam B; Javitt D
    Neuropsychopharmacology; 2012 Jan; 37(1):4-15. PubMed ID: 21956446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabotropic glutamate receptor 3 as a potential therapeutic target for psychiatric and neurological disorders.
    Dogra S; Putnam J; Conn PJ
    Pharmacol Biochem Behav; 2022 Nov; 221():173493. PubMed ID: 36402243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate as a neurotransmitter in the brain: review of physiology and pathology.
    Meldrum BS
    J Nutr; 2000 Apr; 130(4S Suppl):1007S-15S. PubMed ID: 10736372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GLT-1 transporter: an effective pharmacological target for various neurological disorders.
    Soni N; Reddy BV; Kumar P
    Pharmacol Biochem Behav; 2014 Dec; 127():70-81. PubMed ID: 25312503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Glutamatergic neurotransmission as molecular target in anxiety].
    Carobrez Ade P
    Braz J Psychiatry; 2003 Dec; 25 Suppl 2():52-8. PubMed ID: 14978588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving and accelerating drug development for nervous system disorders.
    Pankevich DE; Altevogt BM; Dunlop J; Gage FH; Hyman SE
    Neuron; 2014 Nov; 84(3):546-53. PubMed ID: 25442933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glia as transmitter sources and sensors in health and disease.
    Domingues AM; Taylor M; Fern R
    Neurochem Int; 2010 Nov; 57(4):359-66. PubMed ID: 20380859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mGluR5 antagonists: discovery, characterization and drug development.
    Gasparini F; Bilbe G; Gomez-Mancilla B; Spooren W
    Curr Opin Drug Discov Devel; 2008 Sep; 11(5):655-65. PubMed ID: 18729017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Excitatory amino acid receptors].
    Shinozaki H
    Nihon Yakurigaku Zasshi; 1994 Sep; 104(3):177-87. PubMed ID: 7959410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Dual Role of Glutamatergic Neurotransmission in Alzheimer's Disease: From Pathophysiology to Pharmacotherapy.
    Bukke VN; Archana M; Villani R; Romano AD; Wawrzyniak A; Balawender K; Orkisz S; Beggiato S; Serviddio G; Cassano T
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chinese Herbal Medicine Interventions in Neurological Disorder Therapeutics by Regulating Glutamate Signaling.
    Liu Y; Wang S; Kan J; Zhang J; Zhou L; Huang Y; Zhang Y
    Curr Neuropharmacol; 2020; 18(4):260-276. PubMed ID: 31686629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamatergic neurotransmission: A potential pharmacotherapeutic target for the treatment of cognitive disorders.
    Chakraborty P; Dey A; Gopalakrishnan AV; Swati K; Ojha S; Prakash A; Kumar D; Ambasta RK; Jha NK; Jha SK; Dewanjee S
    Ageing Res Rev; 2023 Mar; 85():101838. PubMed ID: 36610558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.