BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 21957995)

  • 41. Site-directed mutagenesis of ATP binding residues of biotin carboxylase. Insight into the mechanism of catalysis.
    Sloane V; Blanchard CZ; Guillot F; Waldrop GL
    J Biol Chem; 2001 Jul; 276(27):24991-6. PubMed ID: 11346647
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structure of biotin carboxylase in complex with substrates and implications for its catalytic mechanism.
    Chou CY; Yu LP; Tong L
    J Biol Chem; 2009 Apr; 284(17):11690-7. PubMed ID: 19213731
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetic characterization of mutations found in propionic acidemia and methylcrotonylglycinuria: evidence for cooperativity in biotin carboxylase.
    Sloane V; Waldrop GL
    J Biol Chem; 2004 Apr; 279(16):15772-8. PubMed ID: 14960587
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase.
    Broussard TC; Price AE; Laborde SM; Waldrop GL
    Biochemistry; 2013 May; 52(19):3346-57. PubMed ID: 23594205
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selectivity in post-translational biotin addition to five human carboxylases.
    Ingaramo M; Beckett D
    J Biol Chem; 2012 Jan; 287(3):1813-22. PubMed ID: 22123817
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of the kinetics and activation thermodynamics of intra- and inter-organism hybrid tetramers of pyruvate carboxylase.
    Adina-Zada A; Jitrapakdee S; Attwood PV
    Arch Biochem Biophys; 2019 Apr; 665():87-95. PubMed ID: 30831071
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The biotin enzyme family: conserved structural motifs and domain rearrangements.
    Jitrapakdee S; Wallace JC
    Curr Protein Pept Sci; 2003 Jun; 4(3):217-29. PubMed ID: 12769720
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oxaloacetate synthesis in the methanarchaeon Methanosarcina barkeri: pyruvate carboxylase genes and a putative Escherichia coli-type bifunctional biotin protein ligase gene (bpl/birA) exhibit a unique organization.
    Mukhopadhyay B; Purwantini E; Kreder CL; Wolfe RS
    J Bacteriol; 2001 Jun; 183(12):3804-10. PubMed ID: 11371547
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure and function of biotin-dependent carboxylases.
    Tong L
    Cell Mol Life Sci; 2013 Mar; 70(5):863-91. PubMed ID: 22869039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Purification, regulation, and molecular and biochemical characterization of pyruvate carboxylase from Methanobacterium thermoautotrophicum strain deltaH.
    Mukhopadhyay B; Stoddard SF; Wolfe RS
    J Biol Chem; 1998 Feb; 273(9):5155-66. PubMed ID: 9478969
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A mechanism for the transfer of the carboxyl-group from 1'-N-carboxybiotin to acceptor substrates by biotin-containing enzymes.
    Goodall GJ; Prager R; Wallace JC; Keech DB
    FEBS Lett; 1983 Oct; 163(1):6-9. PubMed ID: 6628689
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pyruvate carboxylase: mechanisms of the partial reactions.
    Wallace JC; Phillips NB; Snoswell MA; Goodall GJ; Attwood PV; Keech DB
    Ann N Y Acad Sci; 1985; 447():169-88. PubMed ID: 3860172
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of acetyl CoA on the pre-steady-state kinetics of the biotin carboxylation reaction of pyruvate carboxylase.
    Legge GB; Branson JP; Attwood PV
    Biochemistry; 1996 Mar; 35(12):3849-56. PubMed ID: 8620009
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Probing the allosteric activation of pyruvate carboxylase using 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate as a fluorescent mimic of the allosteric activator acetyl CoA.
    Adina-Zada A; Hazra R; Sereeruk C; Jitrapakdee S; Zeczycki TN; St Maurice M; Cleland WW; Wallace JC; Attwood PV
    Arch Biochem Biophys; 2011 May; 509(2):117-26. PubMed ID: 21426897
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crystal structure of the alpha(6)beta(6) holoenzyme of propionyl-coenzyme A carboxylase.
    Huang CS; Sadre-Bazzaz K; Shen Y; Deng B; Zhou ZH; Tong L
    Nature; 2010 Aug; 466(7309):1001-5. PubMed ID: 20725044
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling and numerical simulation of biotin carboxylase kinetics: implications for half-sites reactivity.
    de Queiroz MS; Waldrop GL
    J Theor Biol; 2007 May; 246(1):167-75. PubMed ID: 17266990
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biotin protein ligase from Candida albicans: expression, purification and development of a novel assay.
    Pendini NR; Bailey LM; Booker GW; Wilce MC; Wallace JC; Polyak SW
    Arch Biochem Biophys; 2008 Nov; 479(2):163-9. PubMed ID: 18809372
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mutational analysis of protein substrate presentation in the post-translational attachment of biotin to biotin domains.
    Polyak SW; Chapman-Smith A; Mulhern TD; Cronan JE; Wallace JC
    J Biol Chem; 2001 Feb; 276(5):3037-45. PubMed ID: 11042165
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans.
    Hagmann A; Hunkeler M; Stuttfeld E; Maier T
    Structure; 2016 Aug; 24(8):1227-1236. PubMed ID: 27396827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.