BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 21957995)

  • 61. Pyruvate carboxylase from Rhizobium etli: mutant characterization, nucleotide sequence, and physiological role.
    Dunn MF; Encarnación S; Araíza G; Vargas MC; Dávalos A; Peralta H; Mora Y; Mora J
    J Bacteriol; 1996 Oct; 178(20):5960-70. PubMed ID: 8830693
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mechanism of biotin responsiveness in biotin-responsive multiple carboxylase deficiency.
    Dupuis L; Campeau E; Leclerc D; Gravel RA
    Mol Genet Metab; 1999 Feb; 66(2):80-90. PubMed ID: 10068510
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Factors that influence the translocation of the N-carboxybiotin moiety between the two sub-sites of pyruvate carboxylase.
    Goodall GJ; Baldwin GS; Wallace JC; Keech DB
    Biochem J; 1981 Dec; 199(3):603-9. PubMed ID: 7340821
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Function of Escherichia coli biotin carboxylase requires catalytic activity of both subunits of the homodimer.
    Janiyani K; Bordelon T; Waldrop GL; Cronan JE
    J Biol Chem; 2001 Aug; 276(32):29864-70. PubMed ID: 11390406
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The carboxybiotin complex of pyruvate carboxylase. A kinetic analysis of the effects of Mg2+ ions on its stability and on its reaction with pyruvate.
    Attwood PV; Wallace JC; Keech DB
    Biochem J; 1984 Apr; 219(1):243-51. PubMed ID: 6721853
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structure of the biotin carboxylase subunit of pyruvate carboxylase from Aquifex aeolicus at 2.2 A resolution.
    Kondo S; Nakajima Y; Sugio S; Yong-Biao J; Sueda S; Kondo H
    Acta Crystallogr D Biol Crystallogr; 2004 Mar; 60(Pt 3):486-92. PubMed ID: 14993673
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Isolation of a carboxyphosphate intermediate and the locus of acetyl-CoA action in the pyruvate carboxylase reaction.
    Phillips NF; Snoswell MA; Chapman-Smith A; Keech DB; Wallace JC
    Biochemistry; 1992 Oct; 31(39):9445-50. PubMed ID: 1390726
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The biotin domain peptide from the biotin carboxyl carrier protein of Escherichia coli acetyl-CoA carboxylase causes a marked increase in the catalytic efficiency of biotin carboxylase and carboxyltransferase relative to free biotin.
    Blanchard CZ; Chapman-Smith A; Wallace JC; Waldrop GL
    J Biol Chem; 1999 Nov; 274(45):31767-9. PubMed ID: 10542197
    [TBL] [Abstract][Full Text] [Related]  

  • 69. QM/MM study of the reaction mechanism of the carboxyl transferase domain of pyruvate carboxylase from Staphylococcus aureus.
    Sheng X; Liu Y
    Biochemistry; 2014 Jul; 53(27):4455-66. PubMed ID: 24963911
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structural and biochemical studies on the regulation of biotin carboxylase by substrate inhibition and dimerization.
    Chou CY; Tong L
    J Biol Chem; 2011 Jul; 286(27):24417-25. PubMed ID: 21592965
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Transcarboxylase 5S structures: assembly and catalytic mechanism of a multienzyme complex subunit.
    Hall PR; Zheng R; Antony L; Pusztai-Carey M; Carey PR; Yee VC
    EMBO J; 2004 Sep; 23(18):3621-31. PubMed ID: 15329673
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Molecular cloning and characterization of two genes for the biotin carboxylase and carboxyltransferase subunits of acetyl coenzyme A carboxylase in Myxococcus xanthus.
    Kimura Y; Miyake R; Tokumasu Y; Sato M
    J Bacteriol; 2000 Oct; 182(19):5462-9. PubMed ID: 10986250
    [TBL] [Abstract][Full Text] [Related]  

  • 73. On the intermediacy of carboxyphosphate in biotin-dependent carboxylations.
    Ogita T; Knowles JR
    Biochemistry; 1988 Oct; 27(21):8028-33. PubMed ID: 2976600
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A distinct holoenzyme organization for two-subunit pyruvate carboxylase.
    Choi PH; Jo J; Lin YC; Lin MH; Chou CY; Dietrich LEP; Tong L
    Nat Commun; 2016 Oct; 7():12713. PubMed ID: 27708276
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of Mg(2+) on the pre-steady-state kinetics of the biotin carboxylation reaction of pyruvate carboxylase.
    Branson JP; Attwood PV
    Biochemistry; 2000 Jun; 39(25):7480-91. PubMed ID: 10858297
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Carbon-13 and deuterium isotope effects on the catalytic reactions of biotin carboxylase.
    Tipton PA; Cleland WW
    Biochemistry; 1988 Jun; 27(12):4325-31. PubMed ID: 3048384
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Striking Diversity in Holoenzyme Architecture and Extensive Conformational Variability in Biotin-Dependent Carboxylases.
    Tong L
    Adv Protein Chem Struct Biol; 2017; 109():161-194. PubMed ID: 28683917
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Catalytic mechanism of biotin carboxylase: steady-state kinetic investigations.
    Tipton PA; Cleland WW
    Biochemistry; 1988 Jun; 27(12):4317-25. PubMed ID: 2971391
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nearly 50 years in the making: defining the catalytic mechanism of the multifunctional enzyme, pyruvate carboxylase.
    Menefee AL; Zeczycki TN
    FEBS J; 2014 Mar; 281(5):1333-1354. PubMed ID: 24476417
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Function of a conserved sequence motif in biotin holoenzyme synthetases.
    Kwon K; Beckett D
    Protein Sci; 2000 Aug; 9(8):1530-9. PubMed ID: 10975574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.