BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21958021)

  • 1. Experimental burial inhibits methanogenesis and anaerobic decomposition in water-saturated peats.
    Blodau C; Siems M; Beer J
    Environ Sci Technol; 2011 Dec; 45(23):9984-9. PubMed ID: 21958021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous methanogenesis stimulates oxidation of atmospheric CH(4) in alpine tundra soil.
    West AE; Schimdt SK
    Microb Ecol; 2002 May; 43(4):408-15. PubMed ID: 12043000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic methane oxidation is quantitatively important in deeper peat layers of boreal peatlands: Evidence from anaerobic incubations, in situ stable isotopes depth profiles, and microbial communities.
    Sabrekov AF; Semenov MV; Terentieva IE; Krasnov GS; Kharitonov SL; Glagolev MV; Litti YV
    Sci Total Environ; 2024 Mar; 916():170213. PubMed ID: 38278226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peatland hydrology and carbon release: why small-scale process matters.
    Holden J
    Philos Trans A Math Phys Eng Sci; 2005 Dec; 363(1837):2891-913. PubMed ID: 16286296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of salinization on aerobic and anaerobic decomposition and mineralization in peat meadows: the roles of peat type and land use.
    Brouns K; Verhoeven JT; Hefting MM
    J Environ Manage; 2014 Oct; 143():44-53. PubMed ID: 24837279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trophic links between fermenters and methanogens in a moderately acidic fen soil.
    Wüst PK; Horn MA; Drake HL
    Environ Microbiol; 2009 Jun; 11(6):1395-409. PubMed ID: 19222542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methanogenic symbionts of anaerobic ciliates and their contribution to methanogenesis in an anoxic rice field soil.
    Schwarz MV; Frenzel P
    FEMS Microbiol Ecol; 2005 Mar; 52(1):93-9. PubMed ID: 16329896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type.
    Gupta V; Smemo KA; Yavitt JB; Fowle D; Branfireun B; Basiliko N
    Environ Sci Technol; 2013 Aug; 47(15):8273-9. PubMed ID: 23822884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence and rates of terminal electron-accepting processes and recharge processes in petroleum hydrocarbon-contaminated subsurface.
    Salminen JM; Hänninen PJ; Leveinen J; Lintinen PT; Jørgensen KS
    J Environ Qual; 2006; 35(6):2273-82. PubMed ID: 17071898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane production and release from two New England peatlands.
    Duval B; Goodwin S
    Int Microbiol; 2000 Jun; 3(2):89-95. PubMed ID: 11001537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methanogenesis and methanogenic pathways in a peat from subarctic permafrost.
    Metje M; Frenzel P
    Environ Microbiol; 2007 Apr; 9(4):954-64. PubMed ID: 17359267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of a novel acidiphilic methanogen from an acidic peat bog.
    Bräuer SL; Cadillo-Quiroz H; Yashiro E; Yavitt JB; Zinder SH
    Nature; 2006 Jul; 442(7099):192-4. PubMed ID: 16699521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of short-term drying and irrigation on electron flow in mesocosms of a northern bog and an alpine fen.
    Deppe M; McKnight DM; Blodau C
    Environ Sci Technol; 2010 Jan; 44(1):80-6. PubMed ID: 20039737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane production in Minnesota peatlands.
    Williams RT; Crawford RL
    Appl Environ Microbiol; 1984 Jun; 47(6):1266-71. PubMed ID: 16346565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Archaeal rRNA diversity and methane production in deep boreal peat.
    Putkinen A; Juottonen H; Juutinen S; Tuittila ES; Fritze H; Yrjälä K
    FEMS Microbiol Ecol; 2009 Oct; 70(1):87-98. PubMed ID: 19656192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and structural response of the methanogenic microbial community in rice field soil to temperature change.
    Conrad R; Klose M; Noll M
    Environ Microbiol; 2009 Jul; 11(7):1844-53. PubMed ID: 19508556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water table related variations in the abundance of intact archaeal membrane lipids in a Swedish peat bog.
    Weijers JW; Schouten S; van der Linden M; van Geel B; Damsté JS
    FEMS Microbiol Lett; 2004 Oct; 239(1):51-6. PubMed ID: 15451100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes.
    Bogard MJ; del Giorgio PA; Boutet L; Chaves MC; Prairie YT; Merante A; Derry AM
    Nat Commun; 2014 Oct; 5():5350. PubMed ID: 25355035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA.
    Cadillo-Quiroz H; Bräuer S; Yashiro E; Sun C; Yavitt J; Zinder S
    Environ Microbiol; 2006 Aug; 8(8):1428-40. PubMed ID: 16872405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.