These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 21958196)

  • 41. From implant planning to surgical execution: an integrated approach for surgery in oral implantology.
    Chiarelli T; Franchini F; Lamma A; Lamma E; Sansoni T
    Int J Med Robot; 2012 Mar; 8(1):57-66. PubMed ID: 22009914
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A virtual sensor for online fault detection of multitooth-tools.
    Bustillo A; Correa M; Reñones A
    Sensors (Basel); 2011; 11(3):2773-95. PubMed ID: 22163766
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distal locking using an electromagnetic field-guided computer-based real-time system for orthopaedic trauma patients.
    Langfitt MK; Halvorson JJ; Scott AT; Smith BP; Russell GB; Jinnah RH; Miller AN; Carroll EA
    J Orthop Trauma; 2013 Jul; 27(7):367-72. PubMed ID: 23429175
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A real-time compliance mapping system using standard endoscopic surgical forceps.
    Fakhry M; Bello F; Hanna GB
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1245-53. PubMed ID: 19174345
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design and Development of a Three-Component Force Sensor for Milling Process Monitoring.
    Li Y; Zhao Y; Fei J; Qin Y; Zhao Y; Cai A; Gao S
    Sensors (Basel); 2017 Apr; 17(5):. PubMed ID: 28441354
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Time trend analysis of otological procedures performed in England, 1989 to 2005.
    Hari CK; Powell R; Weiner GM
    J Laryngol Otol; 2007 Dec; 121(12):1135-9. PubMed ID: 17908351
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tracy-Widom distribution based fault detection approach: application to aircraft sensor/actuator fault detection.
    Hajiyev Ch
    ISA Trans; 2012 Jan; 51(1):189-97. PubMed ID: 21855060
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Precise robot-assisted guide positioning for distal locking of intramedullary nails.
    Yaniv Z; Joskowicz L
    IEEE Trans Med Imaging; 2005 May; 24(5):624-35. PubMed ID: 15889550
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cutting Forces Measurement for Milling Process by Using Working Tables with Integrated PVDF Thin-Film Sensors.
    Luo M; Chong Z; Liu D
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463227
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The problems of education in otosurgery: the current state-of-the-art].
    Ioannides GF
    Vestn Otorinolaringol; 2014; (4):67-70. PubMed ID: 25377684
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Force-based control of a compact spinal milling robot.
    Wang T; Luan S; Hu L; Liu Z; Li W; Jiang L
    Int J Med Robot; 2010 Jun; 6(2):178-85. PubMed ID: 20336637
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The use of the drill in ear surgery.
    Hallén O; Tjellström A
    Acta Otolaryngol; 1975; 80(1-2):81-5. PubMed ID: 1166783
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lost ear wicks.
    Robertson A; Reilly PG
    J R Soc Med; 1999 Mar; 92(3):155. PubMed ID: 10396272
    [No Abstract]   [Full Text] [Related]  

  • 54. Analysis of field-oriented controlled induction motor drives under sensor faults and an overview of sensorless schemes.
    Arun Dominic D; Chelliah TR
    ISA Trans; 2014 Sep; 53(5):1680-94. PubMed ID: 24981890
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A headrest for aural surgery.
    NAGER GT; BOETCKER CH
    Laryngoscope; 1962 Oct; 72():1391-400. PubMed ID: 13937165
    [No Abstract]   [Full Text] [Related]  

  • 56. Re: otological drills.
    Duque CS
    J Laryngol Otol; 1996 May; 110(5):512. PubMed ID: 8762332
    [No Abstract]   [Full Text] [Related]  

  • 57. A method for identifying otological drill entanglement with a cotton swab.
    Cao T; Li X; Gao Z; Feng G; Shen P
    Comput Aided Surg; 2011; 16(6):267-79. PubMed ID: 21958196
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An intelligent method for identifying otological drill slippage.
    Li X; Cao T; Gao Z; Feng G; Shen P
    Proc Inst Mech Eng H; 2012 Apr; 226(4):312-9. PubMed ID: 22611871
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A method for identifying otological drill milling through bone tissue wall.
    Cao T; Li X; Gao Z; Feng G; Shen P
    Int J Med Robot; 2011 Jun; 7(2):148-55. PubMed ID: 21462289
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New method for identifying abnormal milling states of an otological drill.
    Li Y; Li X; Feng G; Gao Z; Shen P
    Med Devices (Auckl); 2015; 8():207-18. PubMed ID: 26097383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.