BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21958327)

  • 21. A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries.
    Park SK; Yu SH; Woo S; Quan B; Lee DC; Kim MK; Sung YE; Piao Y
    Dalton Trans; 2013 Feb; 42(7):2399-405. PubMed ID: 23208383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated circuits based on bilayer MoS₂ transistors.
    Wang H; Yu L; Lee YH; Shi Y; Hsu A; Chin ML; Li LJ; Dubey M; Kong J; Palacios T
    Nano Lett; 2012 Sep; 12(9):4674-80. PubMed ID: 22862813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode.
    Chang J; Huang X; Zhou G; Cui S; Hallac PB; Jiang J; Hurley PT; Chen J
    Adv Mater; 2014 Feb; 26(5):758-64. PubMed ID: 24115353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage.
    Chen D; Quan H; Liang J; Guo L
    Nanoscale; 2013 Oct; 5(20):9684-9. PubMed ID: 23999932
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper.
    Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W
    ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?
    C OA; Caballero Á; Morales J
    Nanoscale; 2012 Mar; 4(6):2083-92. PubMed ID: 22358220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical behavior of alpha-MoO3 nanorods as cathode materials for rechargeable lithium batteries.
    Wen Z; Wang Q; Li J
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2117-22. PubMed ID: 17025135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene-wrapped MnO2 -graphene nanoribbons as anode materials for high-performance lithium ion batteries.
    Li L; Raji AR; Tour JM
    Adv Mater; 2013 Nov; 25(43):6298-302. PubMed ID: 23996876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity.
    Kong J; Liu Z; Yang Z; Tan HR; Xiong S; Wong SY; Li X; Lu X
    Nanoscale; 2012 Jan; 4(2):525-30. PubMed ID: 22127410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction of Cu3Mo2O9 nanoplates with excellent lithium storage properties based on a pH-dependent dimensional change.
    Xia J; Song le X; Liu W; Teng Y; Zhao L; Wang QS; Ruan MM
    Dalton Trans; 2015 Aug; 44(30):13450-4. PubMed ID: 26151316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel graphene-polysulfide anode material for high-performance lithium-ion batteries.
    Ai W; Xie L; Du Z; Zeng Z; Liu J; Zhang H; Huang Y; Huang W; Yu T
    Sci Rep; 2013; 3():2341. PubMed ID: 23903017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A yolk-shell design for stabilized and scalable li-ion battery alloy anodes.
    Liu N; Wu H; McDowell MT; Yao Y; Wang C; Cui Y
    Nano Lett; 2012 Jun; 12(6):3315-21. PubMed ID: 22551164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Green and economical synthesis of carbon-coated MoO2 nanocrystallines with highly reversible lithium storage capacity.
    Sun X; Shi Y; Fang X; Ji H; Li X; Cai S; Zheng C; Hu Y
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4278-85. PubMed ID: 24738383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanocomposite of LiFePO4 and mesoporous carbon for high power cathode of lithium rechargeable batteries.
    Kim JI; Roh KC; Lee JW
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8475-80. PubMed ID: 23421233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage.
    Yang S; Feng X; Müllen K
    Adv Mater; 2011 Aug; 23(31):3575-9. PubMed ID: 21726002
    [No Abstract]   [Full Text] [Related]  

  • 37. Laser-thinning of MoS₂: on demand generation of a single-layer semiconductor.
    Castellanos-Gomez A; Barkelid M; Goossens AM; Calado VE; van der Zant HS; Steele GA
    Nano Lett; 2012 Jun; 12(6):3187-92. PubMed ID: 22642212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability.
    Wang H; Yang Y; Liang Y; Robinson JT; Li Y; Jackson A; Cui Y; Dai H
    Nano Lett; 2011 Jul; 11(7):2644-7. PubMed ID: 21699259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomimetic layer-by-layer Co-mineralization approach towards TiO2/Au nanosheets with high rate performance for lithium ion batteries.
    Hao B; Yan Y; Wang X; Chen G
    Nanoscale; 2013 Nov; 5(21):10472-80. PubMed ID: 24057028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes.
    Cui LF; Ruffo R; Chan CK; Peng H; Cui Y
    Nano Lett; 2009 Jan; 9(1):491-5. PubMed ID: 19105648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.