BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 21958421)

  • 1. Bioethanol Production from Cellulose-Rich Corncob Residue by the Thermotolerant
    Boonchuay P; Techapun C; Leksawasdi N; Seesuriyachan P; Hanmoungjai P; Watanabe M; Srisupa S; Chaiyaso T
    J Fungi (Basel); 2021 Jul; 7(7):. PubMed ID: 34356926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced ethanol production from paper sludge waste under high-solids conditions with industrial and cellulase-producing strains of Saccharomyces cerevisiae.
    van Dyk J; Görgens JF; van Rensburg E
    Bioresour Technol; 2024 Feb; 394():130163. PubMed ID: 38070577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel cyclic shifting of temperature strategy for simultaneous saccharification and fermentation for lignocellulosic bioethanol production.
    Panda SK; Maiti SK
    Bioresour Technol; 2024 Jan; 391(Pt A):129975. PubMed ID: 37931763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering All-Round Cellulase for Bioethanol Production.
    Wang M; Cui H; Gu C; Li A; Qiao J; Schwaneberg U; Zhang L; Wei J; Li X; Huang H
    ACS Synth Biol; 2023 Jul; 12(7):2187-2197. PubMed ID: 37403343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol.
    Chen HZ; Liu ZH; Dai SH
    Biotechnol Biofuels; 2014; 7():53. PubMed ID: 24713041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic hydrolysis and simultaneous saccharification and fermentation of soybean processing intermediates for the production of ethanol and concentration of protein and lipids.
    Long CC; Gibbons W
    ISRN Microbiol; 2012; 2012():278092. PubMed ID: 23762751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks.
    Olofsson K; Bertilsson M; Lidén G
    Biotechnol Biofuels; 2008 May; 1(1):7. PubMed ID: 18471273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9 Approach Constructing Cellulase
    Yang P; Wu Y; Zheng Z; Cao L; Zhu X; Mu D; Jiang S
    Front Microbiol; 2018; 9():2436. PubMed ID: 30364071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of changes in fermentation time, volume of yeast, and mass of plantain pseudo-stem substrate on the simultaneous saccharification and fermentation potentials of African land snail digestive juice and yeast.
    Amadi PU; Ifeanacho MO
    J Genet Eng Biotechnol; 2016 Dec; 14(2):289-297. PubMed ID: 30647627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An accessory enzymatic system of cellulase for simultaneous saccharification and co-fermentation.
    Liu H; Wang X; Liu Y; Kang Z; Lu J; Ye Y; Wang Z; Zhuang X; Tian S
    Bioresour Bioprocess; 2022 Sep; 9(1):101. PubMed ID: 38647872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial valorization of pulp and paper industry process streams and waste.
    Brown DM; Pawlak J; Grunden AM
    Appl Microbiol Biotechnol; 2021 Feb; 105(4):1345-1363. PubMed ID: 33481067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of Second Generation Bioethanol Production from Residual Biomass.
    Robak K; Balcerek M
    Food Technol Biotechnol; 2018 Jun; 56(2):174-187. PubMed ID: 30228792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Bacillus subtilis IND19 cell factory for the simultaneous production of carboxy methyl cellulase and protease using cow dung substrate in solid-substrate fermentation.
    Vijayaraghavan P; Arun A; Al-Dhabi NA; Vincent SG; Arasu MV; Choi KC
    Biotechnol Biofuels; 2016; 9():73. PubMed ID: 27011767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chimonanthus nitens var. salicifolius Aqueous Extract Protects against 5-Fluorouracil Induced Gastrointestinal Mucositis in a Mouse Model.
    Liu Z; Xi J; Schröder S; Wang W; Xie T; Wang Z; Bao S; Fei J
    Evid Based Complement Alternat Med; 2013; 2013():789263. PubMed ID: 24367389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-based comparative transcriptomics in engineered xylose-utilizing Saccharomyces cerevisiae identifies temperature-responsive genes during ethanol production.
    Ismail KS; Sakamoto T; Hasunuma T; Kondo A
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1039-50. PubMed ID: 23748446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper.
    Elliston A; Collins SR; Wilson DR; Roberts IN; Waldron KW
    Bioresour Technol; 2013 Apr; 134():117-26. PubMed ID: 23500568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14.
    Prasetyo J; Naruse K; Kato T; Boonchird C; Harashima S; Park EY
    Biotechnol Biofuels; 2011 Sep; 4():35. PubMed ID: 21958421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae.
    Park EY; Naruse K; Kato T
    Biotechnol Biofuels; 2012 Aug; 5(1):64. PubMed ID: 22938388
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.