These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 21958537)

  • 41. Subchronic (26- and 52-week) toxicity and irritation studies of a novel microbicidal gel formulation containing sodium lauryl sulfate in animal models.
    Piret J; Laforest G; Bussières M; Bergeron MG
    J Appl Toxicol; 2008 Mar; 28(2):164-74. PubMed ID: 17549701
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Micelle-to-vesicle transition induced by organic additives in catanionic surfactant systems.
    Yin H; Lei S; Zhu S; Huang J; Ye J
    Chemistry; 2006 Mar; 12(10):2825-35. PubMed ID: 16416498
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stabilization of unilamellar catanionic vesicles induced by β-cyclodextrins: A strategy for a tunable drug delivery depot.
    Milcovich G; Antunes FE; Grassi M; Asaro F
    Int J Pharm; 2018 Sep; 548(1):474-479. PubMed ID: 29990535
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil.
    Mura S; Manconi M; Sinico C; Valenti D; Fadda AM
    Int J Pharm; 2009 Oct; 380(1-2):72-9. PubMed ID: 19589377
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Benzophenone-3 entrapped in solid lipid microspheres: formulation and in vitro skin evaluation.
    Mestres JP; Duracher L; Baux C; Vian L; Marti-Mestres G
    Int J Pharm; 2010 Nov; 400(1-2):1-7. PubMed ID: 20670679
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimization of in vitro skin permeation by lactic acid from gel formulations.
    Sourla DE; Dallas PP; Rekkas DM; Choulis NH
    J Cosmet Sci; 2003; 54(4):421-6. PubMed ID: 14528393
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Base-triggerable lauryl sarcosinate-dodecyl sulfate catanionic liposomes: structure, biophysical characterization, and drug entrapment/release studies.
    Ravindar C; Reddy ST; Sivaramakrishna D; Damera DP; Swamy MJ
    Soft Matter; 2022 Oct; 18(40):7814-7826. PubMed ID: 36196686
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rheological properties of protein-surfactant based gels.
    Roversi M; La Mesa C
    J Colloid Interface Sci; 2005 Apr; 284(2):470-6. PubMed ID: 15780284
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Benzydamine hydrochloride buccal bioadhesive gels designed for oral ulcers: preparation, rheological, textural, mucoadhesive and release properties.
    Karavana SY; Güneri P; Ertan G
    Pharm Dev Technol; 2009; 14(6):623-31. PubMed ID: 19883251
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of mechanical and rheological properties of metronidazole gel as local delivery system.
    Jelvehgari M; Montazam H
    Arch Pharm Res; 2011 Jun; 34(6):931-40. PubMed ID: 21725814
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Systematically Optimized Imiquimod-Loaded Novel Hybrid Vesicles by Employing Design of Experiment (DoE) Approach with Improved Biocompatibility, Stability, and Dermatokinetic Profile.
    Sharma M; Sharma G; Singh B; Katare OP
    AAPS PharmSciTech; 2019 Mar; 20(4):156. PubMed ID: 30927154
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lauroyl/palmitoyl glycol chitosan gels enhance skin delivery of magnesium ascorbyl phosphate.
    Wang PC; Huang YL; Hou SS; Chou CH; Tsai JC
    J Cosmet Sci; 2013; 64(4):273-86. PubMed ID: 23931090
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adsorption, organization, and rheology of catanionic layers at the air/water interface.
    Arriaga LR; Varade D; Carriere D; Drenckhan W; Langevin D
    Langmuir; 2013 Mar; 29(10):3214-22. PubMed ID: 23421650
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vitro release of tranilast from oily gels and penetration of the drug into Yucatan micropig skin.
    Hori N; Fujii M; Yamanouchi S; Miyagi M; Saito N; Matsumoto M
    Biol Pharm Bull; 1998 Mar; 21(3):300-3. PubMed ID: 9556165
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of viscosity on skin penetration from cellulose ether-based hydrogels.
    Binder L; Mazál J; Petz R; Klang V; Valenta C
    Skin Res Technol; 2019 Sep; 25(5):725-734. PubMed ID: 31062432
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transdermal administration of bromocriptine.
    Degim IT; Acartürk F; Erdogan D; Demirez Lortlar N
    Biol Pharm Bull; 2003 Apr; 26(4):501-5. PubMed ID: 12673032
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent Strategies in the Development of Catanionic Vesicles.
    Kuo AT; Chang CH
    J Oleo Sci; 2016 May; 65(5):377-84. PubMed ID: 27086996
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of drug content, type of semi-solid vehicle and rheological properties on the skin penetration of the model drug fludrocortisone acetate.
    Nagelreiter C; Raffeiner S; Geyerhofer C; Klang V; Valenta C
    Int J Pharm; 2013 May; 448(1):305-12. PubMed ID: 23541986
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of prolonged exposure on sodium dodecyl sulfate penetration into human skin.
    Morris SAV; Bobbitt JR; Ananthapadmanabhan KP; Kasting GB
    Toxicol In Vitro; 2021 Dec; 77():105246. PubMed ID: 34562601
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure and dynamics of cetyltrimethylammonium chloride-sodium dodecylsulfate (CTAC-SDS) catanionic vesicles: High-value nano-vehicles from low-cost surfactants.
    Russo Krauss I; Imperatore R; De Santis A; Luchini A; Paduano L; D'Errico G
    J Colloid Interface Sci; 2017 Sep; 501():112-122. PubMed ID: 28437699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.