These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 21958745)

  • 41. Gene profiling during neural induction in Xenopus laevis: regulation of BMP signaling by post-transcriptional mechanisms and TAB3, a novel TAK1-binding protein.
    Muñoz-Sanjuán I; Bell E; Altmann CR; Vonica A; Brivanlou AH
    Development; 2002 Dec; 129(23):5529-40. PubMed ID: 12403722
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway.
    Takahashi C; Suzuki T; Nishida E; Kusakabe M
    Int J Dev Biol; 2012; 56(5):393-402. PubMed ID: 22811273
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Early head specification in Xenopus laevis.
    Lake BB; Kao KR
    ScientificWorldJournal; 2003 Aug; 3():655-76. PubMed ID: 12920308
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tsukushi controls ectodermal patterning and neural crest specification in Xenopus by direct regulation of BMP4 and X-delta-1 activity.
    Kuriyama S; Lupo G; Ohta K; Ohnuma S; Harris WA; Tanaka H
    Development; 2006 Jan; 133(1):75-88. PubMed ID: 16319115
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus.
    Young JJ; Kjolby RA; Kong NR; Monica SD; Harland RM
    Development; 2014 Apr; 141(8):1683-93. PubMed ID: 24715458
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Xmab21l3 mediates dorsoventral patterning in Xenopus laevis.
    Sridharan J; Haremaki T; Jin Y; Teegala S; Weinstein DC
    Mech Dev; 2012 Jul; 129(5-8):136-46. PubMed ID: 22609272
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zygotic expression of Exostosin1 (Ext1) is required for BMP signaling and establishment of dorsal-ventral pattern in Xenopus.
    Shieh YE; Wells DE; Sater AK
    Int J Dev Biol; 2014; 58(1):27-34. PubMed ID: 24860992
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The phosphatase Pgam5 antagonizes Wnt/β-Catenin signaling in embryonic anterior-posterior axis patterning.
    Rauschenberger V; Bernkopf DB; Krenn S; Jalal K; Heller J; Behrens J; Gentzel M; Schambony A
    Development; 2017 Jun; 144(12):2234-2247. PubMed ID: 28506997
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NEDD4L regulates convergent extension movements in Xenopus embryos via Disheveled-mediated non-canonical Wnt signaling.
    Zhang Y; Ding Y; Chen YG; Tao Q
    Dev Biol; 2014 Aug; 392(1):15-25. PubMed ID: 24833518
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration.
    Wang YH; Keenan SR; Lynn J; McEwan JC; Beck CW
    Mech Dev; 2015 Nov; 138 Pt 3():256-67. PubMed ID: 26527308
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An essential role of Xenopus Foxi1a for ventral specification of the cephalic ectoderm during gastrulation.
    Matsuo-Takasaki M; Matsumura M; Sasai Y
    Development; 2005 Sep; 132(17):3885-94. PubMed ID: 16079156
    [TBL] [Abstract][Full Text] [Related]  

  • 52. G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus.
    Miyagi A; Negishi T; Yamamoto TS; Ueno N
    Dev Biol; 2015 Nov; 407(1):131-44. PubMed ID: 26244992
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intracellular Communication among Morphogen Signaling Pathways during Vertebrate Body Plan Formation.
    Takebayashi-Suzuki K; Suzuki A
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32213808
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Frizzled7 mediates canonical Wnt signaling in neural crest induction.
    Abu-Elmagd M; Garcia-Morales C; Wheeler GN
    Dev Biol; 2006 Oct; 298(1):285-98. PubMed ID: 16928367
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A role for Xenopus Frizzled 8 in dorsal development.
    Itoh K; Jacob J; Y Sokol S
    Mech Dev; 1998 Jun; 74(1-2):145-57. PubMed ID: 9651509
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Axis determination by inhibition of Wnt signaling in Xenopus.
    Itoh K; Sokol SY
    Genes Dev; 1999 Sep; 13(17):2328-36. PubMed ID: 10485853
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PV.1 suppresses the expression of FoxD5b during neural induction in Xenopus embryos.
    Yoon J; Kim JH; Kim SC; Park JB; Lee JY; Kim J
    Mol Cells; 2014 Mar; 37(3):220-5. PubMed ID: 24608799
    [TBL] [Abstract][Full Text] [Related]  

  • 58. FoxM1-driven cell division is required for neuronal differentiation in early Xenopus embryos.
    Ueno H; Nakajo N; Watanabe M; Isoda M; Sagata N
    Development; 2008 Jun; 135(11):2023-30. PubMed ID: 18469223
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo.
    Min TH; Kriebel M; Hou S; Pera EM
    Dev Biol; 2011 Oct; 358(1):262-76. PubMed ID: 21839734
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gene regulatory network for neurogenesis in a sea star embryo connects broad neural specification and localized patterning.
    Yankura KA; Koechlein CS; Cryan AF; Cheatle A; Hinman VF
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8591-6. PubMed ID: 23650356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.