BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 21959022)

  • 21. MgATP-concentration dependence of protection of yeast vacuolar V-ATPase from inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole supports a bi-site catalytic mechanism of ATP hydrolysis.
    Milgrom EM; Milgrom YM
    Biochem Biophys Res Commun; 2012 Jun; 423(2):355-9. PubMed ID: 22659742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vacuolar ATPase as a potential therapeutic target and mediator of treatment resistance in cancer.
    Whitton B; Okamoto H; Packham G; Crabb SJ
    Cancer Med; 2018 Aug; 7(8):3800-3811. PubMed ID: 29926527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The vacuolar ATPase in bone cells: a potential therapeutic target in osteoporosis.
    Yuan FL; Li X; Lu WG; Li CW; Li JP; Wang Y
    Mol Biol Rep; 2010 Oct; 37(7):3561-6. PubMed ID: 20182803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neurotransmitter release: the dark side of the vacuolar-H+ATPase.
    Morel N
    Biol Cell; 2003 Oct; 95(7):453-7. PubMed ID: 14597263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vacuolar ATPases and their role in vision.
    Shine L; Kilty C; Gross J; Kennedy B
    Adv Exp Med Biol; 2014; 801():97-103. PubMed ID: 24664686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurotransmitter release through the V0 sector of V-ATPase.
    Morel N; Dunant Y; Israël M
    J Neurochem; 2001 Nov; 79(3):485-8. PubMed ID: 11701751
    [No Abstract]   [Full Text] [Related]  

  • 27. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level.
    Dietz KJ; Tavakoli N; Kluge C; Mimura T; Sharma SS; Harris GC; Chardonnens AN; Golldack D
    J Exp Bot; 2001 Oct; 52(363):1969-80. PubMed ID: 11559732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simplified model for V-ATPase H+ extrusion.
    Luo C; Clark JW; Heming TA; Bidani A
    IEEE Trans Nanobioscience; 2004 Dec; 3(4):257-64. PubMed ID: 15631137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Covalent Modulators of the Vacuolar ATPase.
    Chen YC; Backus KM; Merkulova M; Yang C; Brown D; Cravatt BF; Zhang C
    J Am Chem Soc; 2017 Jan; 139(2):639-642. PubMed ID: 28010062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vacuolar-type proton ATPase as regulator of membrane dynamics in multicellular organisms.
    Wada Y; Sun-Wada GH; Tabata H; Kawamura N
    J Bioenerg Biomembr; 2008 Feb; 40(1):53-7. PubMed ID: 18214654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and insecticidal activity in vitro and vivo of novel benzenesulfonyl derivatives based on potent target subunit H of V-ATPase.
    Yang C; Li X; Wei J; Zhu F; Gang F; Wei S; Zhao Y; Zhang J; Wu W
    Bioorg Med Chem Lett; 2018 Oct; 28(19):3164-3167. PubMed ID: 30172616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A thermo-physical analysis of the proton pump vacuolar-ATPase: the constructal approach.
    Lucia U; Ponzetto A; Deisboeck TS
    Sci Rep; 2014 Oct; 4():6763. PubMed ID: 25342534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predominant expression and activity of vacuolar H(+)-ATPases in the mixed segment of the wood-feeding termite Nasutitermes takasagoensis.
    Kumara RP; Saitoh S; Aoyama H; Shinzato N; Tokuda G
    J Insect Physiol; 2015 Jul; 78():1-8. PubMed ID: 25937057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osmoregulation and contractile vacuoles of protozoa.
    Allen RD; Naitoh Y
    Int Rev Cytol; 2002; 215():351-94. PubMed ID: 11952235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anchoring and scaffolding: V(1)-ATPase interactions with widespread implications.
    Hildenbrand ZL; Molugu SK; Bernal RA
    Cell Cycle; 2012 Jun; 11(11):2041-2. PubMed ID: 22592525
    [No Abstract]   [Full Text] [Related]  

  • 36. Dual skin functions in amphibian osmoregulation.
    Larsen EH
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Mar; 253():110869. PubMed ID: 33326845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vacuoles: a hollow threat?
    Yaksh TL
    Can J Anaesth; 2010 Mar; 57(3):195-200. PubMed ID: 20054677
    [No Abstract]   [Full Text] [Related]  

  • 38. Evolutionary biology: A ratchet for protein complexity.
    Doolittle WF
    Nature; 2012 Jan; 481(7381):270-1. PubMed ID: 22230958
    [No Abstract]   [Full Text] [Related]  

  • 39. Evaluation of PEN2-ATP6AP1 axis as an antiparasitic target for metformin based on phylogeny analysis and molecular docking.
    Liu C; Zhang S; Xue J; Zhang H; Yin J
    Mol Biochem Parasitol; 2023 Sep; 255():111580. PubMed ID: 37473813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural product synthesis: making nematodes nervous.
    Snyder SA
    Nat Chem; 2011 Jun; 3(6):422-3. PubMed ID: 21602850
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.