These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 21959451)

  • 1. Biomimetic matrices self-initiating the induction of bone formation.
    Ripamonti U; Roden LC; Ferretti C; Klar RM
    J Craniofac Surg; 2011 Sep; 22(5):1859-70. PubMed ID: 21959451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic Functionalized Surfaces and the Induction of Bone Formation.
    Ripamonti U
    Tissue Eng Part A; 2017 Nov; 23(21-22):1197-1209. PubMed ID: 28927342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The induction of bone formation by smart biphasic hydroxyapatite tricalcium phosphate biomimetic matrices in the non-human primate Papio ursinus.
    Ripamonti U; Richter PW; Nilen RW; Renton L
    J Cell Mol Med; 2008 Dec; 12(6B):2609-21. PubMed ID: 18363843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soluble osteogenic molecular signals and the induction of bone formation.
    Ripamonti U
    Biomaterials; 2006 Feb; 27(6):807-22. PubMed ID: 16213014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetics for the induction of bone formation.
    Ripamonti U; Roden L
    Expert Rev Med Devices; 2010 Jul; 7(4):469-79. PubMed ID: 20583884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-inducing shape memory geometric cues embedded within smart hydroxyapatite-based biomimetic matrices.
    Ripamonti U; Richter PW; Thomas ME
    Plast Reconstr Surg; 2007 Dec; 120(7):1796-1807. PubMed ID: 18090741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoinductive hydroxyapatite-coated titanium implants.
    Ripamonti U; Roden LC; Renton LF
    Biomaterials; 2012 May; 33(15):3813-23. PubMed ID: 22364700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs.
    Ripamonti U; Crooks J; Khoali L; Roden L
    Biomaterials; 2009 Mar; 30(7):1428-39. PubMed ID: 19081131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soluble and insoluble signals sculpt osteogenesis in angiogenesis.
    Ripamonti U
    World J Biol Chem; 2010 May; 1(5):109-32. PubMed ID: 21540997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetism, biomimetic matrices and the induction of bone formation.
    Ripamonti U
    J Cell Mol Med; 2009 Sep; 13(9B):2953-72. PubMed ID: 19175690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone induction by BMPs/OPs and related family members in primates.
    Ripamonti U; Ramoshebi LN; Matsaba T; Tasker J; Crooks J; Teare J
    J Bone Joint Surg Am; 2001; 83-A Suppl 1(Pt 2):S116-27. PubMed ID: 11314789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone morphogenetic proteins in craniofacial and periodontal tissue engineering: experimental studies in the non-human primate Papio ursinus.
    Ripamonti U; Herbst NN; Ramoshebi LN
    Cytokine Growth Factor Rev; 2005 Jun; 16(3):357-68. PubMed ID: 15951219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pleiotropism of bone morphogenetic proteins: from bone induction to cementogenesis and periodontal ligament regeneration.
    Ripamonti U; Teare J; Petit JC
    J Int Acad Periodontol; 2006 Jan; 8(1):23-32. PubMed ID: 16459886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and beta-tricalcium phosphate play an important role in bone tissue engineering.
    E LL; Xu LL; Wu X; Wang DS; Lv Y; Wang JZ; Liu HC
    Tissue Eng Part A; 2010 Sep; 16(9):2927-40. PubMed ID: 20486786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixing conditions for cell scaffolds affect the bone formation induced by bone engineering with human bone marrow stromal cells, beta-tricalcium phosphate granules, and rhBMP-2.
    Uchida M; Agata H; Sagara H; Shinohara Y; Kagami H; Asahina I
    J Biomed Mater Res A; 2009 Oct; 91(1):84-91. PubMed ID: 18767063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone morphogenetic proteins, cementogenesis, myoblastic stem cells and the induction of periodontal tissue regeneration.
    Ripamonti U; Petit JC
    Cytokine Growth Factor Rev; 2009; 20(5-6):489-99. PubMed ID: 19897401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soluble and insoluble signals and the induction of bone formation: molecular therapeutics recapitulating development.
    Ripamonti U; Ferretti C; Heliotis M
    J Anat; 2006 Oct; 209(4):447-68. PubMed ID: 17005018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insights into the spontaneous induction of bone formation.
    Ripamonti U; Duarte R
    Biomater Adv; 2024 Apr; 158():213795. PubMed ID: 38335762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone morphogenetic proteins and the induction of bone formation: from laboratory to patients.
    Ripamonti U; Heliotis M; Ferretti C
    Oral Maxillofac Surg Clin North Am; 2007 Nov; 19(4):575-89, vii. PubMed ID: 18088907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parameters in three-dimensional osteospheroids of telomerized human mesenchymal (stromal) stem cells grown on osteoconductive scaffolds that predict in vivo bone-forming potential.
    Burns JS; Rasmussen PL; Larsen KH; Schrøder HD; Kassem M
    Tissue Eng Part A; 2010 Jul; 16(7):2331-42. PubMed ID: 20196644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.